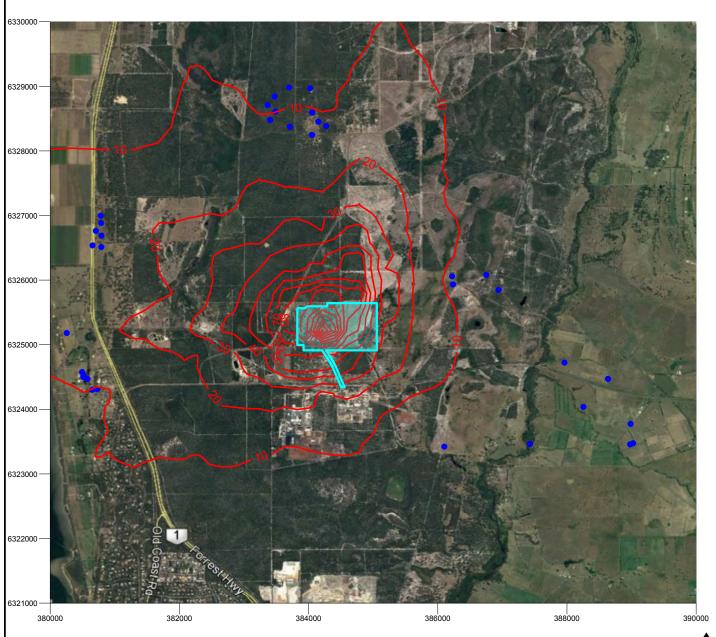

▲ ALBEMARLE®

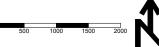
Albemarle Lithium Pty Ltd
Albemarle Kemerton Plant
Air Quality Impact
Assessment - Part B

7. Dispersion modelling results

Table 7-1 to Table 7-5 show the predicted concentrations of each air pollutant at each identified sensitive receptor. The results present the incremental pollutant concentrations, (predicted impacts due to the Plant's pollutant source alone) and the cumulative impact (incremental pollutants plus background concentrations). The background concentrations for each pollutant were presented in Table 3-1.

7.1 Particulates as PM₁₀


Table 7-1 shows that the predicted cumulative 24 hour maximum PM_{10} ground level concentrations at the sensitive receptor locations, inclusive of background concentration of 21 $\mu g/m^3$ (24 hour average) and 18 $\mu g/m^3$ (annual average) measured at Bunbury AQMS, are significantly below the assessed criterion.


Table 7-1 Predicted PM₁₀ 24 hour and annual average concentrations (µg/m³)

Sensitive	24 hour aver	age maximum	Annual average		
receptor	Incremental	Cumulative	Incremental	Cumulative	
Criterion	Ę	50			
1	4	25	0.4	18	
2	5	26	0.3	18	
3	2	23	0.2	18	
4	2	23	0.2	18	
5	3	23	0.2	18	
6	3	24	0.2	18	
7	3	24	0.2	18	
8	5	26	0.3	18	
9	6	27	0.5	18	
10	6	27	0.5	18	
11	9	30	0.7	18	
12	8	29	0.7	18	
13	11	32	2.9	20	
14	11	31	2.7	20	
15	10	31	2.5	20	
16	12	33	2.8	20	
17	12	33	2.4	20	
18	10	31	2.1	20	
19	10	31	2.1	20	
20	9	30	1.9	19	
21	9	30	1.9	19	
22	14	35	2.4	20	
23	15	36	2.5	20	
24	15	36	2.6	20	
25	15	36	2.5	20	
26	16	37	2.5	20	
27	16	37	2.5	20	
28	9	30	1.9	19	
29	12	33	1.3	19	
30	12	33	1.3	19	
31	12	33	1.3	19	
32	11	32	1.2	19	
33	9	30	1.2	19	

Sensitive	24 hour avera	age maximum	Annual average		
receptor	Incremental	Cumulative	Incremental	Cumulative	
Criterion	50		25		
34	9	30	1.1	19	
35	17	38	1.8	19	
36	9	29	2.2	20	

Dispersion modelling results for the maximum 24 hour PM_{10} ground level concentrations are presented as contours in Figure 7-1.

Legend

Maximum 24 hour average PM₁₀ concentration (ug/m³)

Proposed plant boundary

Receptor within grid domain

Sensitive receptor

CRITERIA

NEPM: 24 hour PM_{10} criterion = 50 ug/m³

COPYRIGHT

CUP TRIGIT!

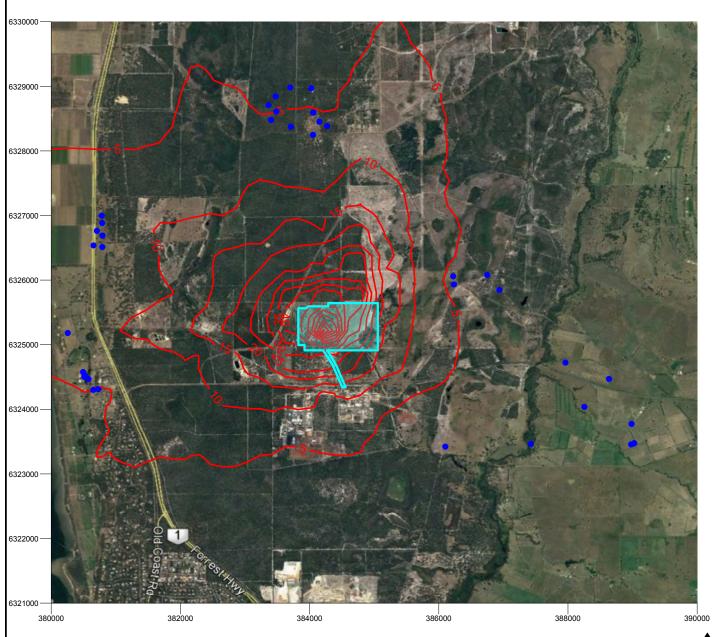
THIS DOCUMENT IS AND SHALL REMAIN
THE PROPERTYOF GHD PTY LTD
THIS DOCUMENT MAY ONLY BE USED
FOR THE PURPOSE FOR WHICH IT
WAS COMMISSIONED
AND IN ACCORDANCEWITH THE TERMS OF
ENGAGEMENT FOR THE COMMISSION

HEIGHT DA	ATUM: AHD
DATE 17.10.2017	FILE LOCATION: Bunbury\Projects\61\36286\Technical\Air Quality\Figures
REVISION Rev 0	DRAWING NO

ALBEMARLE KEMERTON INDUSTRIAL PARK LITHIUM ADVANCED MATERIAL PLANT AIR QUALITY ASSESSMENT

Predicted emissions Incremental maximum 24 hour PM ₁₀ (ug/m³)

7.2 Particulates as PM_{2.5}


Table 7-2 predicted 24 hour maximum $PM_{2.5}$ ground level concentrations at the sensitive receptor locations, inclusive of background of 10 $\mu g/m^3$ (24 hour average) and 9 $\mu g/m^3$ (annual average) measured at Bunbury AQMS.

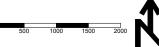

24 hour maximum $PM_{2.5}$ ground level concentrations are significantly below the assessed criterion, however predicted annual average $PM_{2.5}$ exceeds the yearly criteria by up to $2 \mu g/m^3$. The exceedance can be attributed to the existing background concentration, which exceeds the criterion by $1 \mu g/m^3$.

Table 7-2 Predicted PM_{2.5} 24 hour and annual average concentrations (µg/m³)

Sensitive	24 hour average maximum		Annual	average
receptor	Incremental	Cumulative	Incremental	Incremental
Criterion	25		8	
1	2	12	0.2	9
2	2	12	0.2	9
3	1	11	0.1	9
4	1	11	0.1	9
5	1	11	0.1	9
6	2	11	0.1	9
7	2	12	0.1	9
8	2	12	0.1	9
9	3	13	0.2	9
10	3	13	0.2	9
11	4	14	0.3	9
12	4	14	0.3	9
13	6	16	1.5	10
14	5	15	1.4	10
15	5	15	1.2	10
16	6	16	1.4	10
17	6	16	1.2	10
18	5	15	1.1	10
19	5	15	1.0	10
20	5	15	1.0	10
21	5	14	1.0	10
22	7	17	1.2	10
23	7	17	1.3	10
24	8	18	1.3	10
25	7	17	1.2	10
26	8	18	1.3	10
27	8	18	1.3	10
28	5	14	1.0	10
29	6	16	0.7	9
30	6	16	0.6	9
31	6	16	0.6	9
32	6	16	0.6	9
33	5	15	0.6	9
34	5	14	0.6	9
35	9	18	0.9	9
36	4	14	1.1	10

Dispersion modelling results for 24 hour maximum PM_{2.5} ground level concentrations are presented as contours in Figure 7-2.

Legend

Maxmium 24 hour average PM_{2.5} concentration (ug/m³)

Proposed plant boundary

Receptor within grid domain

Sensitive receptor

CRITERIA

NEPM: 24 hour PM_{2.5} criterion = 25 ug/m³

COPYRIGHT

CUP TRIGIT!

THIS DOCUMENT IS AND SHALL REMAIN
THE PROPERTYOF GHD PTY LTD
THIS DOCUMENT MAY ONLY BE USED
FOR THE PURPOSE FOR WHICH IT
WAS COMMISSIONED
AND IN ACCORDANCEWITH THE TERMS OF
ENGAGEMENT FOR THE COMMISSION

HEIGHT DA	HEIGHT DATUM: AHD		
DATE 17.10.2017	FILE LOCATION: Bunbury\Projects\61\36286\Technical\Air Quality\Figures		
REVISION Rev U	DRAWING NO Fig 5-2		

ALBEMARLE KEMERTON INDUSTRIAL PARK LITHIUM ADVANCED MATERIAL PLANT AIR QUALITY ASSESSMENT

Predicted emissions Incremental maximum 24 hour PM _{2.5} (ug/m³)

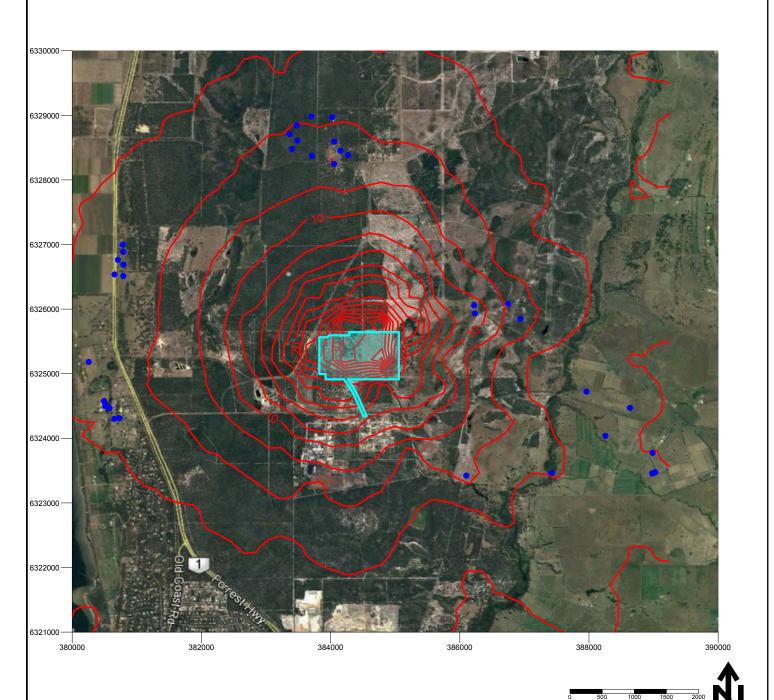

7.3 NO₂

Table 7-3 shows the predicted 1 hour maximum annual average ground level concentrations of NO₂ at the sensitive receptor locations. Assuming a conservative 30% of NO_x as NO₂ (for combustion sources), including the background NO₂ measurements of 41 μ g/m³(1 hour) and 30 μ g/m³ (annual) from South Lake AQMS, the predicted concentrations are significantly below the assessed criteria.

Table 7-3 Predicted NO₂ maximum 1 hour and annual average concentrations (µg/m³)

Sensitive	Maximum 1 l	hour average	Annual	Annual average		
receptor	Incremental Cumulative		Incremental	Incremental		
Criterion	246		62			
1	7	48	0.04	13		
2	4	45	0.03	13		
3	2	43	0.02	13		
4	2	43	0.02	13		
5	2	43	0.02	13		
6	2	43	0.03	13		
7	3	44	0.02	13		
8	4	45	0.03	13		
9	7	48	0.05	13		
10	8	49	0.04	13		
11	11	52	0.06	13		
12	12	53	0.06	13		
13	8	49	0.24	13		
14	7	48	0.22	13		
15	7	48	0.20	13		
16	8	49	0.23	13		
17	7	48	0.19	13		
18	7	48	0.17	13		
19	7	48	0.17	13		
20	7	48	0.16	13		
21	6	47	0.16	13		
22	5	46	0.15	13		
23	6	47	0.16	13		
24	6	47	0.16	13		
25	6	47	0.16	13		
26	6	47	0.17	13		
27	5	46	0.17	13		
28	6	47	0.16	13		
29	6	47	0.09	13		
30	6	47	0.08	13		
31	5	46	0.08	13		
32	5	46	0.08	13		
33	5	46	0.08	13		
34	5	46	0.08	13		
35	5	46	0.11	13		
36	6	47	0.18	13		

Dispersion modelling results for 1-hour maximum NO_2 ground level concentrations are presented as contours in Figure 7-3.

 $\checkmark \checkmark$

Maximum 1 hour average NO₂ concentration

Proposed plant boundary

Receptor within grid domain

Sensitive receptor

CRITERIA

NEPM: 1 hour NO₂ criterion = 246 ug/m³

COPYRIGHT

CUP TRIGIT!

THIS DOCUMENT IS AND SHALL REMAIN
THE PROPERTYOF GHD PTY LTD
THIS DOCUMENT MAY ONLY BE USED
FOR THE PURPOSE FOR WHICH IT
WAS COMMISSIONED
AND IN ACCORDANCEWITH THE TERMS OF
ENGAGEMENT FOR THE COMMISSION

HORIZONT.	AL DATUM; WGS 84 PROJECTION; UTM Zone 50 N
HEIGHT DA	ITUM; AHD
DATE 17.10.2017	FILE LOCATION: Bunbury\Projects\61\36286\Technical\Air Quality\Figures
REVISION	DRAWING NO
Rev 0	Fig 5-3

ALBEMARLE KEMERTON INDUSTRIAL PARK LITHIUM ADVANCED MATERIAL PLANT AIR QUALITY ASSESSMENT

CLIENTS PEOPLE PERFORMANCE

Predicted emissions Incremental maximum 1 hour NO₂(ug/m³)

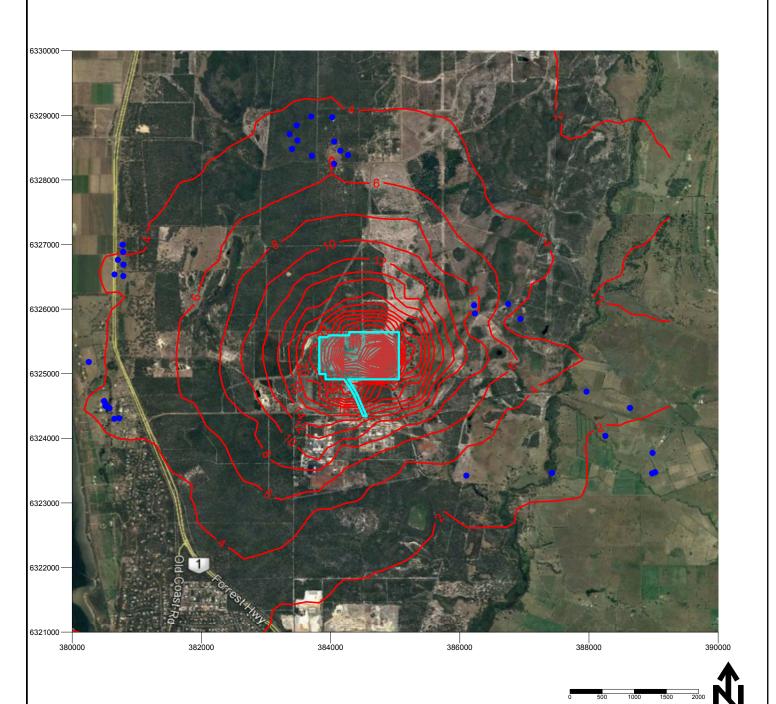

7.4 SO₂

Figure 7-4 shows that the predicted 1 hour maximum, 24 hour maximum and annual average ground level concentrations at the sensitive receptor locations, inclusive of the background measurements of 21 μ g/m³(1 hour), 8 μ g/m³ (24 hour) and 5 μ g/m³ (annual) at South Lake AQMS, are significantly below the assessed criteria.

Table 7-4 Predicted SO₂ maximum 1 hour, 24 hour and annual average concentrations (µg/m³)

Sensitive receptor	Maximum 1 hour average		Maximum 24 hour average		Annual average	
	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative
Criterion	5	70	22	28	6	60
1	4	25	0.24	8	0.02	5
2	3	24	0.29	8	0.01	5
3	1	22	0.14	8	0.01	5
4	1	22	0.14	8	0.01	5
5	1	22	0.18	8	0.01	5
6	2	23	0.23	8	0.01	5
7	2	23	0.27	8	0.01	5
8	3	24	0.38	8	0.01	5
9	3	24	0.34	8	0.02	5
10	5	26	0.36	8	0.02	5
11	8	29	0.54	9	0.03	5
12	9	30	0.74	9	0.03	5
13	5	26	0.77	9	0.15	5
14	6	27	0.68	9	0.14	5
15	6	27	0.66	9	0.13	5
16	7	28	0.80	9	0.15	5
17	5	26	0.78	9	0.13	5
18	6	27	0.68	9	0.11	5
19	5	26	0.66	9	0.11	5
20	5	26	0.62	9	0.10	5
21	4	25	0.61	9	0.10	5
22	5	26	1.08	9	0.15	5
23	5	26	1.14	9	0.16	5
24	4	25	1.08	9	0.16	5
25	4	25	1.03	9	0.15	5
26	4	25	1.00	9	0.15	5
27	4	25	0.96	9	0.15	5
28	4	25	0.59	9	0.10	5
29	5	26	0.74	9	0.08	5
30	5	26	0.74	9	0.08	5
31	5	26	0.73	9	0.08	5
32	5	26	0.73	9	0.08	5
33	5	26	0.63	9	0.07	5
34	5	26	0.62	9	0.07	5
35	4	25	1.05	9	0.11	5
36	4	25	0.55	9	0.11	5

Dispersion modelling results for 1 hour maximum SO₂ ground level concentrations are presented as contours in Figure 7-4.

Maximum 1 hour average SO₂ concentration

Proposed plant boundary

Receptor within grid domain

Sensitive receptor

CRITERIA

NEPM: 1 hour SO_2 criterion = 570 ug/m³

COPYRIGHT
THIS DOCUMENT IS AND SHALL REMAIN
THE PROPERTYOF GHD PTY LTD
THIS DOCUMENT MAY ONLY BE USED
FOR THE PURPOSE FOR WHICH IT
WAS COMMISSIONED
AND IN ACCORDANCEWITH THE TERMS OF
ENGAGEMENT FOR THE COMMISSION

DATE 17.10.2017	FILE LOCATION: Bunbury\Projects\61\36286\Technical\Air Quality\Figures
REVISION Rev U	DRAWING NO Fig 5-4

ALBEMARLE KEMERTON INDUSTRIAL PARK LITHIUM ADVANCED MATERIAL PLANT AIR QUALITY ASSESSMENT

Predicted emissions Incremental maximum 1 hour SO₂ (ug/m³)

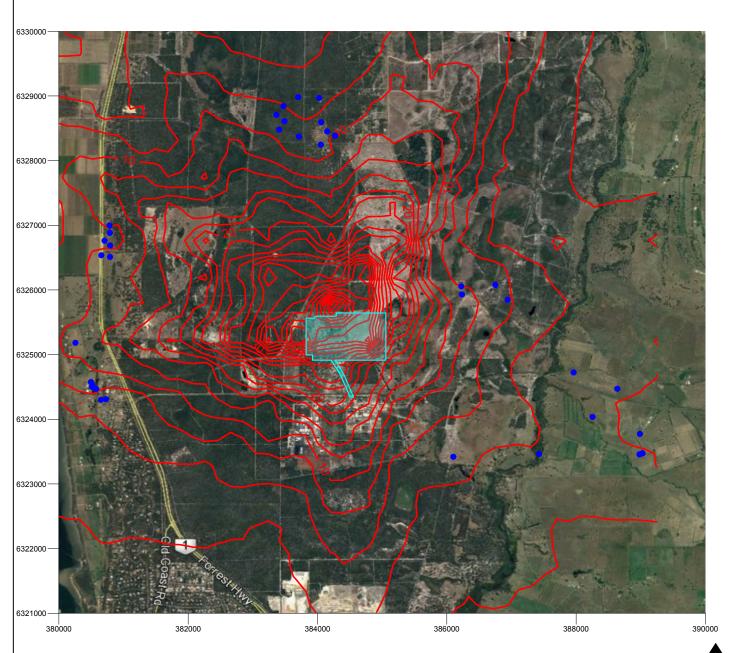

7.5 CO

Table 7-5 shows that the predicted 8 hour maximum CO ground level concentrations at the sensitive receptor locations, inclusive of a background of 575 μ g/m³ measured at South Lake AQMS, are significantly below the assessed criterion.

Table 7-5 Predicted CO maximum 8 hour concentrations (µg/m³)

Sensitive	8 hour average maximum				
receptor	Incremental	Cumulative			
Criteria		10,000			
1	5	580			
2	4	579			
3	2	577			
4	2	577			
5	2	577			
6	2	577			
7	2	577			
8	3	578			
9	6	581			
10	6	581			
11	8	583			
12	9	584			
13	11	586			
14	9	584			
15	8	583			
16	8	583			
17	10	585			
18	10	585			
19	9	584			
20	9	584			
21	8	583			
22	11	586			
23	11	586			
24	10	585			
25	9	584			
26	9	584			
27	11	586			
28	7	582			
29	10	585			
30	9	584			
31	9	584			
32	8	583			
33	7	582			
34	7	582			
35	11	586			
36	7	582			

Dispersion modelling results for 8 hour maximum CO ground level concentrations are presented as contours in Figure 7-5.

500 1000 1500

Legend

Maximum 8 hour average CO concentration

Proposed plant boundary

Receptor within grid domain

Sensitive receptor

CRITERIA

NEPM: 8 hour CO criterion = 10,000 ug/m3

COPYRIGHT

CUP TRIGIT!

THIS DOCUMENT IS AND SHALL REMAIN
THE PROPERTYOF GHD PTY LTD
THIS DOCUMENT MAY ONLY BE USED
FOR THE PURPOSE FOR WHICH IT
WAS COMMISSIONED
AND IN ACCORDANCEWITH THE TERMS OF
ENGAGEMENT FOR THE COMMISSION

HEIGHT DATUM: AHD				
DATE 17.10.2017	FILE LOCATION: Bunbury\Projects\61\36286\Technical\Air Quality\Figures			
REVISION Rev (DRAWING NO			

ALBEMARLE KEMERTON INDUSTRIAL PARK LITHIUM ADVANCED MATERIAL PLANT AIR QUALITY ASSESSMENT

Predicted emissions Incremental maximum 24-hour PM _{2.5} (ug/m³)

8. Discussion

The modelling results of this study indicate that predicted cumulative ground level concentrations at sensitive receptors are below the NEPM ambient air quality criteria.

An air dispersion modelling study of the KSIA (Environmental Alliances 2010) examined the NO_2 and SO_2 impacts from existing industry, approved future industry and numerous hypothetical future industries to represent future impacts. The predicted cumulative ground level concentrations were determined to meet NEPM criteria and therefore were within acceptable air quality limits.

By assuming the scenario predicted in (Environmental Alliances 2010) is representative of the current air shed at the KSIA, and the predicted air quality provided in this report, it is suggested that combined air emissions from existing land uses and this study will still be below the air quality criteria. The combined results are shown in Table 8-1.

Table 8-1

Predicted cumulative impact of the Albemarle Kemerton Plant (100,000 tpa)

and a full suite of industry in the KSIA using Environmental

Alliances modelling (2010)

Predicted pollutant			Maximum 1 hour ground concentration level from hypothetical full KSIA scenario (Air Emissions, 2010) μg/m³	Cumulative impact µg/m³
NO ₂	246	12	71	83
SO ₂	572	9	169	178

9. Conclusion

This report has assessed the potential emissions of PM₁₀, PM_{2.5}, NO₂, SO₂ and CO concentrations associated with the proposed Albemarle Kemerton Plant.

Dispersion modelling with AERMOD was used to predict potential PM_{10} , $PM_{2.5}$, NO_2 , SO_2 and CO impacts at nearby sensitive receptors.

The results presented in this air dispersion modelling study of the Plant indicate that predicted PM_{10} , $PM_{2.5}$, NO_2 , SO_2 and CO concentrations at all receptors as a result of operation of the proposed Plant are within the assessment criteria.

Overall, the assessment shows that the Plant can operate without causing any significant air quality impact to identified sensitive receptors.

10. References

BOM (2016). Climate statistics for Australian locations – Bunbury Automatic Weather Station. Retrieved from http://www.bom.gov.au/climate/data/

DEC (2011) A guideline for managing the impacts of dust and associated contaminants from land development sites, contaminated sites remediation and other related activities.

DWER (2016) 2015 Western Australia Air Monitoring Report.

Environmental Alliances Pty Ltd, 2010, 'Air Quality Modelling for the Expansion of the Kemerton Industrial Estate'. Prepared for Air Assessments.

Katestone (2012) Air Quality Impact Assessment of the ABC Birkenhead Cement Plant during May 2012.

NEPM (1998) National Environment Protection Measure for Ambient Air Quality. National Environment Protection Council.

NPI (2011) Emissions Estimate technique manual for Combustion in Boilers. Version 3.6

Vic EPA (2001) State Environment Protection Policy (Air Quality Management).

GHD

Level 10 999 Hay Street

T: 61 8 6222 8222 F: 61 8 6222 8555 E: permail@ghd.com

© GHD 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

4409/https://projects.ghd.com/oc/WesternAustralia/confidentialproject/Delivery/Documents/6136286 -REP-GHD air assessment Rev B.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
Rev A	A Sala Tenna	Barry Cook	Botoch	F. Hannon	Tronsmale Hannon	3/11/2017
Rev 0	A Sala Tenna			F. Hannon	Tronsuale Hannon	7/11/2017

www.ghd.com

