

Henderson Marine Support Base

Baseline Sediment
Investigation Reclamation Area

Prepared for:

AME Pty Ltd

August 2017

people
 planet
 professional

Document		Prepared	Reviewed	Admin Review	Submitted to Client	
Reference	Revision	by	by		Copies	Date
1293 JA	INTERNAL DRAFT	VM	AW			-
1293 JA	CLIENT DRAFT	VM/AW	AME (SW)	SH	1 Electronic (email)	05/07/17
1293 JB	DRAFT FOR REVIEW	VM	DoT	-	1 Electronic (email)	13/07/17
1293 JC	FINAL	VM	AW		1 Electronic (email)	29/08/17

Disclaimer

This report is issued in accordance with, and is subject to, the terms of the contract between the Client and 360 Environmental Pty Ltd, including, without limitation, the agreed scope of the report. To the extent permitted by law, 360 Environmental Pty Ltd shall not be liable in contract, tort (including, without limitation, negligence) or otherwise for any use of, or reliance on, parts of this report without taking into account the report in its entirety and all previous and subsequent reports. 360 Environmental Pty Ltd considers the contents of this report to be current as at the date it was produced. This report, including each opinion, conclusion and recommendation it contains, should be considered in the context of the report as a whole. The opinions, conclusions and recommendations in this report are limited by its agreed scope. More extensive, or different, investigation, sampling and testing may have produced different results and therefore different opinions, conclusions and recommendations. Subject to the terms of the contract between the Client and 360 Environmental Pty Ltd, copying, reproducing, disclosing or disseminating parts of this report is prohibited (except to the extent required by law) unless the report is produced in its entirety including this cover page, without the prior written consent of 360 Environmental Pty Ltd.

© Copyright 2017 360 Environmental Pty Ltd ACN 109 499 041

Executive Summary

360 Environmental Pty Ltd was commissioned by AME Pty Ltd to undertake a Baseline Sediment Investigation (BSI) of the proposed reclamation area at Lots 305-307 Clarence Beach Road, Henderson, Western Australia (herein referred to as the site). The site is located adjacent to Jervoise Bay in Cockburn Sound and is under the jurisdiction of the Department of Transport.

AME intends to enhance the ability for ship manufacturing and maintenance at the site by dredging a small area adjacent to the facility and utilising the dredge material for land reclamation to create a land-backed wharf to the maximum reclamation limit of their lease. As such a baseline assessment of the sediment quality in the proposed reclamation area is required.

It is noted that a baseline sediment investigation of the dredge is concurrently being undertaken by 360 Environmental (360 Environmental, 2017) to assess the viability of the sediments for the proposed reclamation sediment and the potential impacts to water quality by mobilisation of sediments during dredging.

The objective of this BSI is to collect sufficient data to quantitatively assess the sediment quality within the proposed reclamation area, to confirm the nature and quality of onshore groundwater and soil prior to land reclamation works. The following scope of work was undertaken:

- Collection of sediment samples from the seabed using a Van Veen grab sampler from the barge, shore or jetty up from seven (7) locations across the site, including one (1) background location
- Groundwater quality monitoring from the onshore groundwater monitoring well
- Collection of a soil sample from one (1) onshore sampling location
- Laboratory analysis of three (3) sediments within the reclamation area, one (1) soil sample and one (1) groundwater sample at National Association of Testing Authorities (NATA) certified primary and secondary laboratories for the nominated contaminants of potential concern (COPCs)
- Application of field quality assurance/quality control procedures and practices

The following results were reported:

- TKN and TP were detected in all three sediment samples ranging between 0.6 mg.N/g and 1.3 mg.N/g for TKN and between 0.32 mg.P/g and 0.5 mg.P/g for phosphorous. TN and TP were also detected in the groundwater sample at 2,900 ug.N/L and 14 ug.P/L, respectively.
- Copper, mercury, lead, nickel and zinc were detected above the LOR in all sediment samples ranging between 21 mg/kg to 49 mg/kg (copper), 0.01 mg/kg to 0.04 mg/kg (mercury), 6.9 mg/kg to 17 mg/kg (lead), 1.8 mg/kg to 9.9

- mg/kg (nickel) and 36 mg/kg to 73 mg/kg (zinc). With the exception of copper (0.3 ug/L), mercury, lead, nickel and zinc were not detected above the LOR in the groundwater sample.
- TBT was detected in all three sediments samples ranging between 10.3 ug/kg and 27.3 ug/kg. TBT was however not detected above the LOR in the groundwater sample.
- TPH and PAHs were reported above the LOR in all three sediments samples, however BTEX remained below the LOR. Total TPH ranged between 34 ug/kg to 62 ug/kg and total PAHs ranged between 319 ug/kg to 1030 ug/kg. The highest hydrocarbon concentrations were reported in sediment sample SD05 collected close to the shore in the central portion of the site and SD03 collected from the offshore barge in the southern portion of the site. With the exception of naphthalene (0.02 ug/L), hydrocarbons were not detected above the LOR in the groundwater sample.
- TBT exceeded the NAGD (2009) Screening Level, the EPA (2017) EQG and the ANZECC/ARMCANZ (2000) ISQG-low in all three sediments samples, however these concentrations are typical of TBT contamination present within the area.
- Total nitrogen exceeded the ANZECC/ARMCANZ Marine water guideline for total nitrogen.

Table of Contents

	Introduction	/
1.1	Legal Background	7
1.2	Objectives	
1.3	Scope of Work	7
2	Site Identification	9
2.1	Previous Studies	
3	Environmental Values and Assessment Criteria	10
3.1	Nominated Tier 1 Assessment Criteria	. 11
4	Targeted Investigation	16
4.1	Sampling Methodology	
4.2	Data Validation and Usability	
4.3	Results	
4.4	Risk Assessment	
5	Limitations	
6	References	27
Lis	st of Tables (within report)	
	st of Tables (within report) le A: Site Identification and Land Use Information	9
Tab	st of Tables (within report) le A: Site Identification and Land Use Information	
Tab Tab	le A: Site Identification and Land Use Information	. 10
Tab Tab Tab	le A: Site Identification and Land Use Informationle B: Environmental Values	. 10 . 12
Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 12
Tab Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 12 . 15
Tab Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 12 . 15
Tab Tab Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 15 . 15
Tab Tab Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 15 . 15 . 17
Tab Tab Tab Tab Tab Tab Tab Tab	le A: Site Identification and Land Use Information	. 10 . 12 . 15 . 15 . 17 . 18

List of Tables (rear of report)

- Table 1: Sediments QA/QC Results
- Table 2: Groundwater QA/QC Results
- Table 3: Sediment Analytical Results

Table 4: Groundwater Analytical Results

List of Figures

Figure 1: Site Location

Figure 2: Sampling Locations

List of Appendices

Appendix A Field Documentation

Appendix B Laboratory Certificates of Analysis

Acronyms

ACRONYM	DEFINITION		
ВТЕХ	Benzene, Toluene, Ethylbenzene, and Xylene		
COPC	Contaminants of Potential Concern		
CSMC	Cockburn Sound Management Council		
DoT	Department of Transport		
EPA	Environmental Protection Authority		
LOR	Limit of Reporting		
mAHD	metres Australian Height Datum		
МЕРА	Moderate Ecological Protection Area		
NAGD	National Assessment Guidelines for Dredging		
NATA	National Association of Testing Authorities		
PAH	Polycyclic Aromatic Hydrocarbons		
QAQC	Quality Assurance / Quality Control		
SAP	Sampling Analysis Plan		
ТВТ	Tributyltin		
TRH	Total Recoverable Hydrocarbons		
TSS	Total Suspended Solids		

1 Introduction

360 Environmental Pty Ltd (360 Environmental) was commissioned by AME Pty Ltd (AME) to undertake a Baseline Sediment Investigation (BSI) of the proposed reclamation area at Lots 305-307 Clarence Beach Road, Henderson, Western Australia (WA) (herein referred to as the site). The site is located adjacent to Jervoise Bay in Cockburn Sound and is under the jurisdiction of the Department of Transport (DoT) (Figure 1).

AME intends to enhance the ability for ship manufacturing and maintenance at the site by dredging a small area adjacent to the facility and utilising the dredge material for land reclamation to create a land-backed wharf to the maximum reclamation limit of their lease. As such a baseline assessment of the sediment quality in the proposed reclamation area is required.

It is noted that a baseline sediment investigation of the dredge is concurrently being undertaken by 360 Environmental (360 Environmental, 2017) to assess the viability of the sediments for the proposed reclamation sediment and the potential impacts to water quality by mobilisation of sediments during dredging.

1.1 Legal Background

The implementation of these works are required to be undertaken in accordance with the underlying principles of the DoT Environmental Management Framework (EMF), which is an internal reference document primarily focused on maintenance dredge programmes. Further, key elements of the EMF identify that characterisation of the sediment quality, will need to be undertaken in accordance with the Contaminated Sites Act 2003 (CS Act) and Department of Environment Regulations (DER) endorsed guidelines. These are identified as DER's December 2014 Assessment and Management of Contaminated Sites, Contaminated Sites Guideline [AMCS Guideline] and relevant 1999 National Environment Protection (Assessment of Site Contamination) Amendment Measure No.1, revised May 2013 [2013 NEPM ASC] schedules.

1.2 Objectives

The objective of this BSI is to collect sufficient data to quantitatively assess the sediment quality within the proposed reclamation area, to confirm the nature and quality of onshore groundwater and soil prior to land reclamation works.

1.3 Scope of Work

In order to satisfy the objectives of the investigation the following scope of work was undertaken:

- Collection of sediment samples from the seabed using a Van Veen grab sampler from the barge, shore or jetty up from seven (7) locations across the site, including one (1) background location
- Groundwater quality monitoring from the onshore groundwater monitoring well
- Collection of a soil sample from one (1) onshore sampling location
- Laboratory analysis of three (3) sediments within the reclamation area, one (1) soil sample and one (1) groundwater sample at National Association of Testing Authorities (NATA) certified primary and secondary laboratories for the nominated contaminants of potential concern (COPCs)
- Application of field quality assurance/quality control procedures and practices
- Preparation of this report, which outlines the methodology and findings of the assessment and provides recommendations.

2 Site Identification

Key site identification and land use information is summarised in Table A and Figure 1.

Table A: Site Identification and Land Use Information

SITE IDENTIFICATION					
Current Owner	AME Pty Ltd	H			
Primary Address	49/53 Clare	nce Beach Road, Hende	erson, WA		
	The site prop	perty details are as follow	ws and illustrated on Figure 2.		
Site Property Details	Lot	Diagram/ Plan	Area [hectares (ha)]		
	305-306	76230	~5		
Zoning	'Special Use' under the City of Cockburn – Local planning scheme				
Current Land Use	Commercial,	/Industrial			
Future Land Use	Commercial,	/Industrial			
Abutting land use	East: Commercial/Industrial – Cristal Global (warehouse) West: Indian Ocean North: Commercial/Industrial – Marine Base South: Commercial/Industrial – BAE Systems				

2.1 Previous Studies

Numerous studies focused on water and sediment quality have been undertaken within Cockburn Sound and indicated that tributyltin (TBT), hydrocarbons and heavy metals (particularly copper and zinc) were the main COPCs. Sediments in Australia are known to contain high levels of arsenic and nickel; arsenic was not detected during previous investigations, but nickel was present in low levels in some areas. Due to the potential for some marine paints to have contained lead historically and based on the nature of the site operations, lead and nickel are also considered a COPC for the site.

3 Environmental Values and Assessment Criteria

As identified in the 2013 NEPM ASC schedules and 2014 DER AMCS Guideline, environmental values relate to land, groundwater, and surface water and generally mean the following:

- Beneficial Use: conducive to public benefit, public amenity, public safety, public health or aesthetic enjoyment and which requires protection from the effects of emissions or of activities.
- Ecosystem Health Condition: relevant to the maintenance of ecological structure, ecological function or ecological process and which requires protection from the effects of emissions or of activities.

The identification of environmental values is used to guide the nomination of appropriate assessment criteria for the evaluation of quality data collected for the site. The results of this evaluation is documented in Table B.

Table B: Environmental Values

RECEPTORS	CONSIDERATIONS	CURRENT/FORSEEABLE FUTURE ENVIRONMENTAL VALUE		
		ON-SITE	OFF-SITE	
	The site and surrounding land uses are currently used for commercial/industrial purposes	commercial/ industrial	commercial/ industrial	
	The future land use for the site is not proposed to be changed			
Land	With the exception of a grass area at the back of the site, the site is void of vegetation that has the potential to sustain terrestrial ecosystem life. Further, the site is fenced therefore limiting potential entrance from transient fauna.			
Groundwater	Groundwater is not currently used onsiteGroundwater at the site is tidally influenced	None	Marine Ecosystem Health	
Surface Water	The site is located within Cockburn Sound directly adjacent to the Indian Ocean	Marine Ecosystem	Marine Ecosystem	

RECEPTORS	CONSIDERATIONS	CURRENT/FORSEEABLE FUTURE ENVIRONMENTAL VALUE		
		ON-SITE	OFF-SITE	
		Health	Health	

3.1 Nominated Tier 1 Assessment Criteria

Based on consideration of the environmental values, Table C defines the nominated Tier 1 assessment criteria to be adopted for the evaluation of soil, groundwater and sediment screening data at the site.

Table C: Assessment Criteria, Description, Use, & Application – Soil

Soil Investigation Levels	Description, Use and Application	Nominated Land Use / Environmental Value	Relevant Analytes
Source: 2013	NEPM		
Health Investigation Level (HIL)	 Values that have been developed for a broad range of metals They apply for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface. 	Human Health: D – Commercial / Industrial	Heavy Metals
Ecological Investigation Levels (EIL)	 Values that have been developed for a broad range of metals and organic substances for ecological systems. EILs depend on specific soil physiochemical properties [i.e., pH, CEC, and % clay] and land use scenarios and generally apply to the top 2 m of soil. 	Terrestrial Ecosystem Health	Heavy Metals

Table D: Assessment Criteria, Description, Use, & Application – Sediments

Soil Investigation Levels	Description, Use and Application	Nominated Land Use / Environmental Value	Relevant Analytes				
	Source: National Water Quality Management Strategy, Australian Water Quality Guidelines for Fresh and Marine Waters (ANZECC & ARMCANZ, 2000)						
Interim Sediment Quality Guidelines (ISQG) - Low	 Values have been developed to define the extent of the threat to ecosystem health posed by sediment-associated contaminants The ISQG-low is a trigger value that is a threshold concentration and below this concentration the 	Marine Ecosystem Health	Heavy Metals TBT				

Soil Investigation Levels	Description, Use and Application	Nominated Land Use / Environmental Value	Relevant Analytes				
	frequency of adverse effects is expected to be very low						
Source: Natio	Source: National Assessment Guidelines for Dredging (Commonwealth of Australia 2009)						
Screening Level (ISQG Trigger Value)	Values are applied for the assessment of the impact to the marine environment due to dredging operations, but does not apply to disposal of the dredge material in the nearshore environment, as proposed for the intended purpose of land reclamation* The screening levels are the		Heavy Metals TBT				
	onmental quality criteria reference doc cument to the State Environmental (C						
	 Values have been developed to protect ecosystem health posed by sediment-associated contaminants 		Heavy Metals TBT**				
Environmental Quality Guideline (EQG)	The ISQG-low from ANZECC and ARMCANZ (2000) is the EQG value and the ISQG-high is the EQG re-sampling trigger The ISQG-low from ANZECC and AN	Marine Ecosystem Health					
	EQG have not been developed for aluminium, manganese and titanium at this time because they are generally considered to						

Soil Investigation Levels	Description, Use and Application	Nominated Land Use / Environmental Value	Relevant Analytes
	have low toxicity in marine sediments		
	 For metals, the guidelines are based on total metal concentration 		

*It is noted here that the DER 2014 AMCS guidelines outlines that the NAGD (2009) "are not appropriate for assessing disposal of dredged sediment to land. This would require characterisation of the material and assessment of its compatibility with the receiving environment and associated land uses on a site-specific basis (in accordance with guidance provided in Schedule B2 of the NEPM)".

**The Environmental Quality Criteria reference document for Cockburn Sound (EPA 2017) recommends the normalisation of organic contaminants in sediments to 1% organic carbon. Similarly the Environmental Quality Criteria Reference Document (EPA 2017) note the requirement to normalise organics to 1% TOC. However, the NAGD (2009) requires TBT results to be normalised, and CSIRO similarly recommend that data should be normalised for sediments with a TOC content of 0.2-10% (Graeme Batley, pers comm., CSIRO, June 2005.). To enable correct comparison of TBT data against the EQG, and to maintain consistency with other studies, results from this study have been reported with normalisation to 1% TOC.

Site-specific Ecological Investigation Levels (EILs) for copper, nickel and zinc were calculated for the site's sediments using the following equation:

$$EIL = ACL + ABC$$

Where:

ABC = the ambient background concentration

ACL = added contaminant limit

ACL values are provided in Schedule B1 of the ASC NEPM and are dependent on the cation exchange capacity (CEC), electrical conductivity (EC), pH, and percentage clay in soil (% clay). Table E provides a summary of the sediments property values.

Table E: Site-Specific EIL

COPC	Soil Property	Soil Property Value	ACL	ABC	Calculated EIL
Sediments					
Copper	pH+ or CEC	7.9 (pH) or 31.9 (CEC)	320	49	369
Nickel	CEC	31.9 (CEC)	600	9.9	610
Zinc	CEC & pH	7.9 (pH) and 31.9 (CEC)	1500	73	1573

Table F: Assessment Criteria, Description, Use, & Application – Groundwater

Soil Investigation Levels	Description, Use and Application	Nominated Land Use / Environmental Value	Relevant Analytes				
	Source: National Water Quality Management Strategy, Australian Water Quality Guidelines for Fresh and Marine Waters (ANZECC & ARMCANZ, 2000)						
Groundwater Investigation Level (GIL) – Marine Water Source: Enviro	Values applied for the protection of marine ecosystems. In the protection of marine ecosystems.	Marine Ecosystem Health ment for Cockburn Sou	Nutrients Heavy Metals TBT Naphthalene Benzene				
Source: Environmental quality criteria reference document to the State Environmental (Cockburn Sound) Environment al Quality Guideline (EQG) – Moderate Protection Area			Heavy Metals TBT Naphthalene Benzene				

4 Targeted Investigation

The targeted investigation was undertaken at the site on 10 May 2017 for the purpose of providing baseline quality data before the start of reclamation works.

4.1 Sampling Methodology

A total of seven (7) sediment locations were sampled across the proposed reclamation area, and one (1) groundwater sample was collected from the onshore and existing groundwater monitoring well on 10 May 2017 (Figure 2). Due to the presence of limestone, the proposed soil bore could not be advanced at the time of the investigation.

The sediment samples were collected using a Van Veen grab sampler whilst the groundwater sample was collected using a low-flow peristaltic pump in accordance with the 360 Environmental's Technical Standard Operating Procedure (TSOP) presented in the SAQP (360 Environmental, 2017).

Three (3) sediment samples (SD1, SD3 and SD5), one (1) groundwater sample and quality control samples were selected for laboratory analysis at NATA accredited laboratories for the analysis of the following COPC:

- Nutrients: Total Kjeldahl Nitrogen (TKN) and Total Phosphorous (TP)
- Inorganics: Total Organic Carbon (TOC)
- Heavy Metals: Copper, mercury, lead, nickel, zinc
- Organometallics: Tributyltin (TBT)
- Hydrocarbons: Total Recoverable Hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX) and Polycyclic Aromatic hydrocarbons (PAH)

4.2 Data Validation and Usability

The field and analytical results and QC data were evaluated for accuracy, precision and representativeness of the data and compiled into a QA/QC report (Table 1 and 2) and checked against the DQOs specified in the SAQP (360 Environmental, 2017) to ensure that these objectives have been met. Field documentation is provided in Appendix A and laboratory certificates are compiled in Appendix B.

4.2.1 Field QA/QC

Table G summarises the compliance with the field QA/QC procedures.

Table G: Field QA/QC Compliance

FIELD	QA/QC Compliance Component	Compliant	Comment
QA/QC			
Calibration	Field equipment requiring calibration was calibrated prior to sampling and complied with calibration checks.	Y	The YSI was appropriately calibrated. Calibration certificates provided in Appendix A
	Sediment and groundwater samples were collected in accordance with required monitoring procedures	Υ	None
Sample	Standardised field documentation used to record field activities.	Υ	Field documentation is provided in Appendix A
Collection	Laboratory prepared sample jars and bottles used for sample collection	Υ	None
	Decontamination of sample equipment undertaken between samples	Υ	The YSI was decontaminated in line with the TSOP
	Samples kept chilled at all times following sample collection	Υ	None
	Samples appropriately handled between field and laboratory	Υ	None
Sample Handling and Transit	Samples transported under chain of custody	Υ	A copy of the chain of custody is provided in Appendix B
	Samples received in good condition at the laboratory	Υ	Laboratory Sample Receipt Notification identifying that samples were received in good condition are provided in Appendix B

Table H summarises the number and frequency of field QC samples and compliance with QC sample frequency and adopted data quality indicator (DQI) assessment criteria as defined in the QAP.

Table H: Sediment and Groundwater Field QA/QC Sample Compliance

QC Sample Type	Primary Sample	QC Sample	Date	% of Primary Sample	No. of QC Samples Acceptable	QC DQI	DQI Non- Compliances
Sediment I	nvestigation						
Duplicate	SD03	QC1	10/05/17	14.5%	Yes	RPD <50%	PAH > 50% Total TPH >50%
Triplicate		QC2		14.5%	Yes	RPD <50%	PAH > 50% Hg > 50%
Groundwater Investigation							
Duplicate	MW03	QC3	10/05/17	100%	Yes	RPD <50%	-

4.2.2 Laboratory QA/QC

Outcomes of the laboratory QA/QC data validation assessment are summarised below in Table I.

Table I: Laboratory QA/QC Summary Table

QA/QC	Compliant?	QC Non-Compliances
Analytes Holding Times	Υ	None. All analysis were reported within holding times
Practical Quantification Limit (PQL)	N	LOR has been raised for analyte "pyrene" for sample GW3 due to suspected matrix effects and non-target peak interferences
Laboratory QC (frequency)	N	Quality Control Sample Frequency Outliers exist for metals and SVOCs.
Laboratory Surrogates	N	Poor surrogate recovery for various samples due to matrix effects and non-target analyte peaks.
Laboratory Duplicates	Υ	None.
Laboratory Matrix Spikes	N	Poor matrix spike recovery and duplicate precision on the QC1 sample for TPH and PAH due to heterognity, suspected matrix effects and non-

QA/QC	Compliant?	QC Non-Compliances
		target peak interferences.
Laboratory Method Blanks	Υ	None. All samples for sediments and groundwater were below acceptance limits (set at LOR).
Laboratory Control Samples (LCS)	N	LCS recovery for BTEX falls outside ALS Dynamic Control lower Limit.

4.2.3 Data Usability

In evaluating the data quality, it was identified that there were field and laboratory QA/QC non-compliances associated with the analytical results. In consideration of the outcomes of the QA/QC evaluation of non-compliances below, the majority of reported non-compliances are not considered to materially impact on the interpretation and use of the data at this stage of the investigation. Where potential bias has been introduced as a result of the QA/QC evaluation, the higher concentration data has conservatively been adopted for use at this stage of the investigation.

4.2.3.1 Field QC

Elevated Sediments RPD's

Elevated RPDs were reported between SD03 and QC1 for various PAHs and Total TPH, and between SD03 and QC2 for various PAHs and Hg. The relatively low levels of the reported compounds and the general heterogeneity of sediment samples are deemed to have been the cause of the elevated RPDs. Primary, duplicate and triplicate sample concentrations for these analytes reported consistent non-exceedances of the relevant assessment criteria, however it was noted that concentrations of PAHs were not usually detected above the LOR in triplicate sample QC2. This indicates potential false positives of PAHs concentrations in the primary samples. The elevated RPDs may therefore have introduced a consequential bias to the interpretation of the data, however given that the concentrations reported in the primary sample are below the assessment criteria, this is not considered to impact the assessment of the results.

4.2.3.2 Laboratory QC

PQLs

The LOR was raised for analyte "pyrene" for sample GW3 due to suspected matrix effects and non-target peak interferences. Concentrations for these analytes reported consistent non-exceedances of the relevant assessment criteria. The elevated RPDs are considered to not have introduced a consequential bias to the interpretation of the data

Laboratory QC Frequency

Insufficient laboratory quality control samples were analysed for heavy metals and SVOCs in sediments however concentrations of VOC and SVOC remained below the

relevant assessment criteria for these specific analytes. Therefore this does not affect the use of the data for risk assessment purposes.

Laboratory Matrix Spikes, Surrogates and Control Samples

Poor surrogate and matrix spike recovery was reported for various samples due to matrix effects and non-target analyte peaks. Poor spike recovery due to sample heterogeneity and possible matrix interference. Given that acceptable recoveries were reported for most laboratory control samples, the impact of the poor recovery in the matrix spikes and surrogates is considered to have minimal impact on the precision and accuracy of the data set.

The laboratory control sample recovery for BTEX was outside ALS's Dynamic Control Upper Limit. As the LCS recover was within the acceptance criteria based on standard USEPA 8270 limits, in internal standard exceedance is not considered to have a consequential impact on the laboratory data. Further, this analyte was reported below the LOR in all samples.

4.3 Results

4.3.1 Field Results

4.3.1.1 Sediment Investigation

A copy of the sediment logging sheet and the groundwater quality measurement form is presented in Appendix A. Key field observations were identified as follows:

- The general lithology of the sediments samples collected across the reclamation area consisted of fine grained black clayey sand and sand with shells. Coarse black and brown sand was reported in sample SD04 and SD06 located offshore to the north of the two onsite barges. Dark orange sand was further reported in SD07 located outside the project scope to the north of the northern site boundary next to the boat ramp.
- An organic odour was reported in sample SD02, SD03 and SD06.

4.3.1.2 Groundwater Investigation

Depth to Groundwater and Inferred Groundwater Flow Direction

The depth to water measurements obtained during the sampling event on 10 May 2017 indicated that groundwater was present at approximately 3 mbgl.

Table J: Groundwater Synoptic Data

		Well Constru	IOTION DETAILS	GME				
		WELL CONSTRU	OCTION DETAILS	10/05/2017				
WELL ID	FLUSH MOUNT OR MONUMENT	DISTANCE BETWEEN TOC AND GROUND LEVEL	Casing Diameter	D ЕРТН ТО ВОТТОМ	DEPTH TO WATER	DEPTH TO WATER		
		m	(mm)	mbTOC	mbTOC	mbgl		
MW03	Monument	0.485	50	5.46	3.485	3.0		

Groundwater Stabilisation Data

Low flow purging and sampling was completed as part of the groundwater monitoring activity. The groundwater low flow purging water quality measurements obtained as part of the sampling are presented in the field documentation provided in Appendix A. An overview of the measurements recorded once stabilisation criteria had been met is provided in Table K. Note that the information provided in Table K represents the final screening results from low flow purging activities associated with demonstrating stabilisation of the aquifer unit. Due to the use of a low flow sampling method, the stabilised data are considered reasonably representative of in-situ groundwater physicochemical conditions and can used as screening criteria for groundwater characterisation purposes.

Table K: Field Parameters

STABILISATION PARAMETER	RESULTS	DISCUSSION
Temperature	22.2 degree Celsius (°C)	Groundwater is characterised as
рН	7.41	neutral to slightly alkaline, slightly brackish, exhibiting aerobic
Specific conductivity (EC)	1,235 microsiemens per centimetre (μ S/cm)	conditions and oxidising conditions
Dissolved oxygen (DO)	4.23 milligrams per litre (mg/L)	
Oxygen Reduction Potential (ORP)	139 millivolts (mV)	

4.3.2 Analytical Results

4.3.2.1 Sediments Results

Analytical results for the sediment samples collected are tabulated in Table 3. The following substances were detected above the laboratory Limits of Reporting (LOR):

Nutrients

TKN and TP were detected in all three sediment samples ranging between 0.6 mg.N/g and 1.3 mg.N/g for TKN and between 0.32 mg.P/g and 0.5 mg.P/g for phosphorous. The highest concentrations of TKN and P were reported in sediment sample SD01 collected in the southern-most portion of the site.

Heavy Metals

Copper, mercury, lead, nickel and zinc were detected above the LOR in all sediment samples. The following ranges were noted:

- Copper: 21 mg/kg to 49 mg/kg (SD01)
- Mercury: 0.01 mg/kg to 0.04 mg/kg (SD01)
- Lead: 6.9 mg/kg to 17 mg/kg (SD01)
- Nickel: 1.8 mg/kg to 9.9 mg/kg (SD01)
- Zinc: 36 mg/kg to 73 mg/kg (SD01)

The highest heavy metals were consistently reported in sediment sample SD01 collected in the southern-most portion of the site.

TBT

TBT was detected in all three sediments samples ranging between 10.3 ug/kg and 27.3 ug/kg. The highest concentration of TBT was reported in sediment sample SD05 collected in the central portion of the site, close to the shore.

Hydrocarbons

TPH and PAHs were reported above the LOR in all three sediments samples, however BTEX remained below the LOR. The following ranges were noted:

- Total TPH: 34 ug/kg to 62 ug/kg (SD05)
- Total PAHs: 319 ug/kg to 1030 ug/kg (SD03)

The highest hydrocarbon concentrations were reported in sediment sample SD05 collected close to the shore in the central portion of the site and SD03 collected from the offshore barge in the southern portion of the site.

4.3.2.2 Groundwater Results

Analytical results for the groundwater sample collected are tabulated in Table 4. The following substances were detected above the laboratory Limits of Reporting (LOR):

Nutrients

TN and TP were detected in the groundwater sample at 2,900 ug.N/L and 14 ug.P/L, respectively.

Heavy Metals

With the exception of copper (0.3 ug/L), mercury, lead, nickel and zinc were not detected above the LOR in the groundwater sample.

TBT

TBT was not detected above the LOR in the groundwater sample.

Hydrocarbons

With the exception of naphthalene (0.02 ug/L), hydrocarbons were not detected above the LOR in the groundwater sample.

4.4 Risk Assessment

This section compares sediments and groundwater laboratory data against the nominated numeric Tier 1 Human Health and Ecological Risk Assessment Criteria. It is noted here that due to the size of the tabulated results, only the data that exceeded the Tier 1 criteria are presented in this section.

4.4.1 Sediment Results

The following sediment exceedance was reported:

● TBT exceeded the NAGD (2009) Screening Level, the EPA (2017) EQG and the ANZECC/ARMCANZ (2000) ISQG-low in all three sediments samples.

These concentrations are typical of TBT contamination present within the area and generally understood to be caused by antifouling paint flakes. Previous investigations (Coffey, 2011) to the north of the site indicated TBT concentrations ranging between 174 and 1,200 ug/kg in offshore sediments. These concentrations are ten to hundred times greater than the concentrations reported at the site.

4.4.2 Groundwater Results

The following groundwater exceedance was reported:

Total nitrogen exceeded the ANZECC/ARMCANZ Marine water guideline for total nitrogen.

The elevated total nitrogen concentration indicates eutrophication of the water.

5 Stakeholder Consultation

This report was issued to DoT for review and comment, in conjunction with the Baseline Sediment Investigation – Dredge Area (360 Environmental 2017). Table L outlines the comments provided by DoT and responses or amendments made to the report.

Table L: Stakeholder Consultation

COMMENT	RESPONSE/EDITS
Consider providing more information regarding the spatial extent of elevated TBT concentrations in sediments by analysing remaining samples in the reclamation area (pending recommended sample storage and holding times), and undertaking elutriate analyses of samples that exceed relevant guidelines for TBT. This process would help determine the risk of mobilising contamination during reclamation activities.	Following further discussion with the DoT representative it was concluded that considering the time elapsed, the samples are significantly outside of holding time and the reliability of data from further analysis would be uncertain. It is considered that the sampling locations within the dredge and reclamation areas provide an acceptable spatial understanding of the contaminants within the proposed reclamation area. The risk of mobilising sediments within the reclamation area is negligible compared to the mobilisation that will occur during dredging. Further, TBT levels within the dredge area were
	comparable to the levels recorded in the reclamation area and all raw elutriate results were compliant with applicable guidelines (360 Environmental 2017).
Consider the risk of added contaminant concentrations in background water, and the appropriateness of subtracting these background concentrations from individual site elutriate results when determining an exceedance.	Please refer to Baseline Sediment Investigation - Dredge Area (360 Environmental 2017)

COMMENT	RESPONSE/EDITS
Consider terrestrial receptors at the reclamation site by conservatively applying the relevant HILs/EILs, as it is noted that inline with DER (2014) "[CA (2009) guidelines] are not appropriate for assessing disposal of dredged sediment to land. This would require characterisation of the material and assessment of its compatibility with the receiving environment and associated land uses on a site-specific basis (in accordance with guidance provided in Schedule B2 of the NEPM)".	Please refer to Baseline Sediment Investigation – Dredge Area (360 Environmental 2017)
No review comments are provided for any groundwater monitoring as it was outside the area of relevant expertise of the reviewer	Noted.

6 Limitations

This report is produced strictly in accordance with the scope of services set out in the contract or otherwise agreed in accordance with the contract. 360 Environmental makes no representations or warranties in relation to the nature and quality of soil and water other than the visual observation and analytical data in this report.

In the preparation of this report, 360 Environmental has relied upon documents, information, data and analyses ("client's information") provided by the client and other individuals and entities. In most cases where client's information has been relied upon, such reliance has been indicated in this report. Unless expressly set out in this report, 360 Environmental has not verified that the client's information is accurate, exhaustive or current and the validity and accuracy of any aspect of the report including, or based upon, any part of the client's information is contingent upon the accuracy, exhaustiveness and currency of the client's information. 360 Environmental shall not be liable to the client or any other person in connection with any invalid or inaccurate aspect of this report where that invalidity or inaccuracy arose because the client's information was not accurate, exhaustive and current or arose because of any information or condition that was concealed, withheld, misrepresented, or otherwise not fully disclosed or available to 360 Environmental.

Aspects of this report, including the opinions, conclusions and recommendations it contains, are based on the results of the investigation, sampling and testing set out in the contract and otherwise in accordance with normal practices and standards. The investigation, sampling and testing are designed to produce results that represent a reasonable interpretation of the general conditions of the site that is the subject of this report. However, due to the characteristics of the site, including natural variations in site conditions, the results of the investigation, sampling and testing may not accurately represent the actual state of the whole site at all points.

It is important to recognise that site conditions, including the extent and concentration of contaminants, can change with time. This is particularly relevant if this report, including the data, opinions, conclusions and recommendations it contains, are to be used a considerable time after it was prepared. In these circumstances, further investigation of the site may be necessary.

Subject to the terms of the contract between the Client and 360 Environmental Pty Ltd, copying, reproducing, disclosing or disseminating parts of this report is prohibited (except to the extent required by law) unless the report is produced in its entirety including this page, without the prior written consent of 360 Environmental Pty Ltd.

7 References

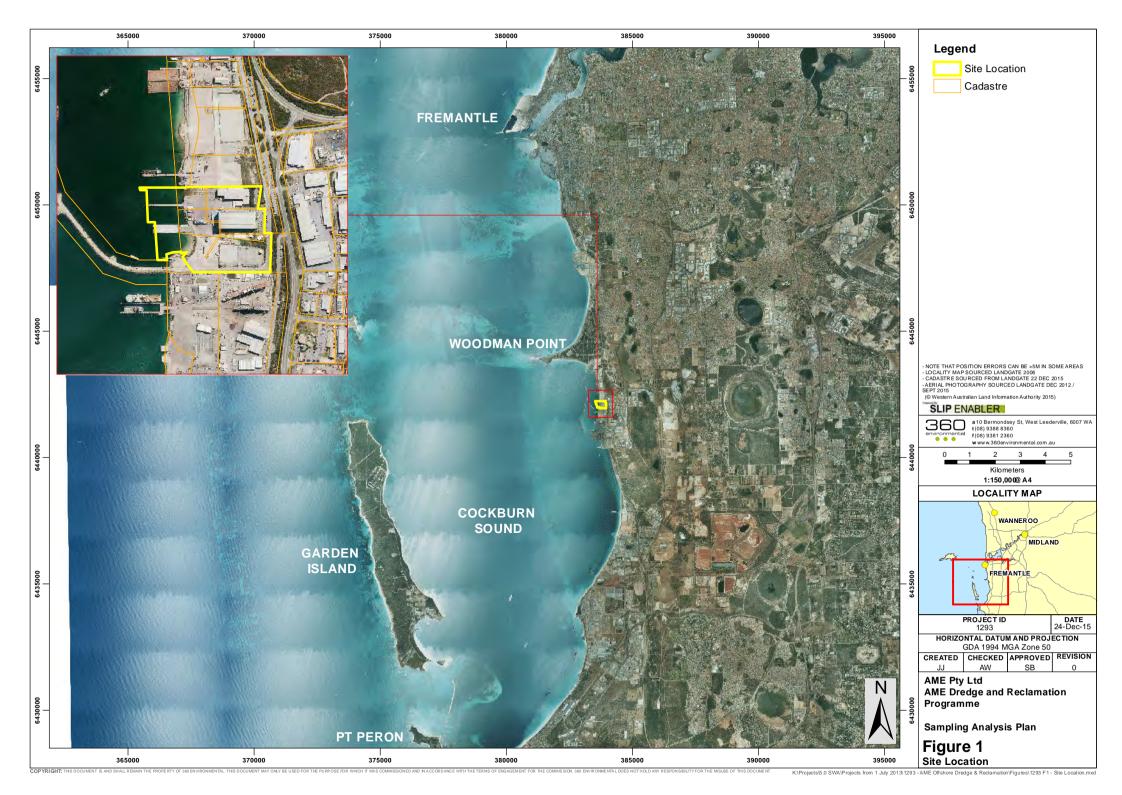
360 Environmental 2017, Baseline Sediment Investigation – Dredge Area, draft prepared for AME Pty Ltd, July 2017.

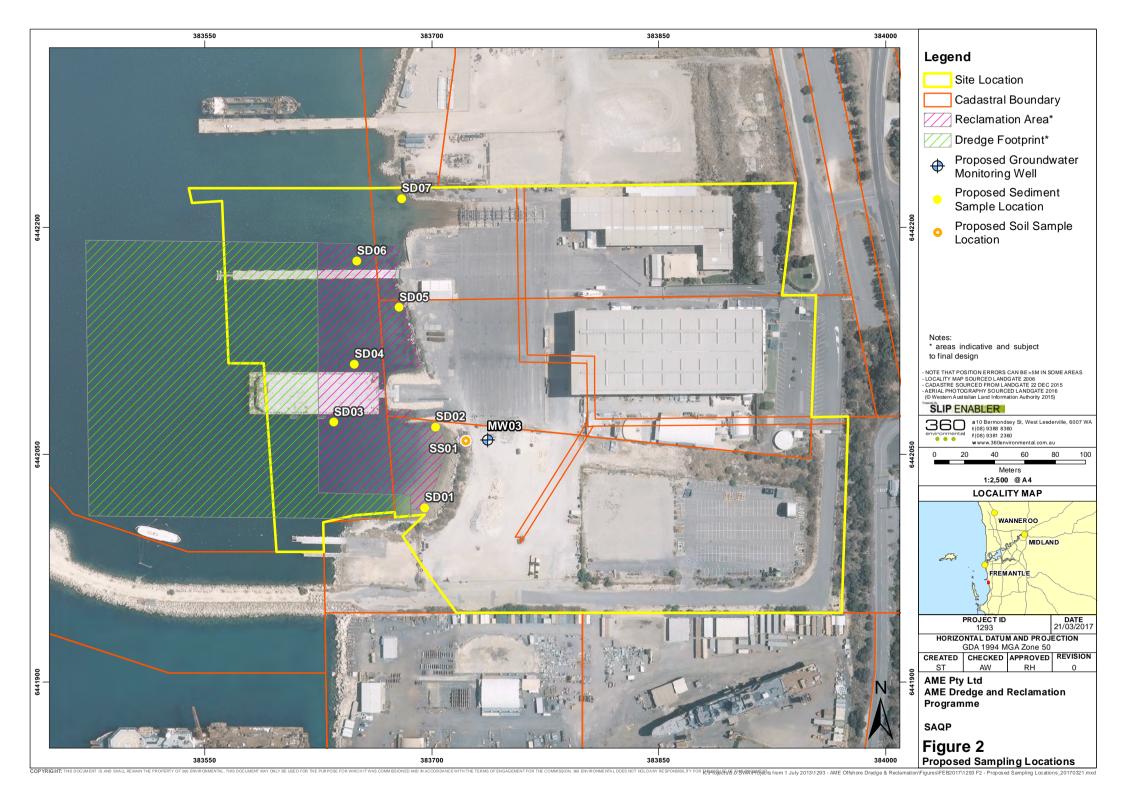
Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) 2000 National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, October 2000

National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia 2009)

State Environmental (Cockburn Sound) Policy 2015 (Environmental Protection Authority [EPA] 2015)

Environmental quality criteria reference document for Cockburn Sound – a supporting document to the State Environmental (Cockburn Sound) Policy 2015 (EPA 2017)


Manual of Standard Operating Procedures: For Environmental Monitoring against the Cockburn Sound Environmental Quality Criteria (2003-2004)1 – a supporting document to the State Environmental (Cockburn Sound) Policy 2005 (now 2015) (EPA Report 21, 2005)


Environmental Factor Guideline: Marine Environmental Quality (EPA 2016)

Technical Guidance: Environmental Impact Assessment of Marine Dredging Proposals (EPA 2016)

FIGURES

TABLES

	Sample ID		SD03	QC1		SD03	QC2	
	Sample Matrix Laboratory		Sediment	Sediment	RPD	Sediment	Sediment	RPD
			MAFRL, ALS	MAFRL, ALS		MAFRL, ALS	ChemCentre	
	Dat	e Sampled	10/05/2017	10/05/2017		10/05/2017	10/05/2017	
Analyte	LOR	Units						
Nutrients Total Kjeldahl Nitrogen	0.1	mg.N/g	1.0	0.8	22%	1.0	0.86	15%
Total Phosphorous	0.05	mg.P/g	0.35	0.31	12%	0.35	0.28	22%
norganics								
Total Organic Carbon	0.2	% C	0.9	0.7	25%	0.9	0.8	12%
Heavy Metals Fotal Copper	0.2	mg/kg	37	30	21%	37	25	39%
Fotal Mercury	0.01	mg/kg	0.03	0.02	40%	0.03	0.2	148%
Fotal Lead	0.1	mg/kg	13	12	8%	13	9.4	32%
Fotal Nickel	0.2	mg/kg	1.8	1.6	12%	1.8	2.1	15%
Fotal Zinc	0.5	mg/kg	36	32	12%	36	27	29%
Organo-metalloids Fributyltin (as Sn)	0.5	ug.Sn/kg	9.3	NT	NA	9.3	5.8	46%
Hydrocarbons	0.5	ug.stry ng	3.3		101	3.3	3.0	40,0
Fotal Petroleum Hydrocarbons (sum)	3	mg/kg	56	32	54%	56	<100	NA
Napthalene	5	ug/kg	<5	<5	0%	<5	<10	NA
2-Methylnaphthalene	5	ug/kg	<5	<5	0%	<5	<10	NA
Acenaphthylene	4	ug/kg	8	4	67%	8	<10	NA
Acenaphthene	4	ug/kg	<4	6	0%	<4	<10	NA
Fluorene	4	ug/kg	7	8	13%	7	<10	NA
Phenanthrene	4	ug/kg	54	29	60%	54	<10	NA
Anthracene	4	ug/kg	<4	<4	0%	<4	<10	NA
Fluoranthene	4	ug/kg	137	52	90%	137	20	149%
Pyrene	4	ug/kg	122	41	99%	122	10	170%
Benz(a)anthracene	4	ug/kg	95	36	90%	95	<10	NA
Chrysene	4	ug/kg	51	13	119%	51	<10	NA
Benzo(b+j) fluoranthene	4	ug/kg	120	40	100%	120	<20	NA
Benzo(k)fluoranthene	4	ug/kg	45	9	133%	45	<10	NA
Benzo€pyrene	4	ug/kg	47	15	103%	47	<10	NA
Benzo(a)pyrene	4	ug/kg	101	29	111%	101	<10	NA
Perylene	4	ug/kg	17	<4	0%	17	<10	NA
Benzo(g,h,i)perylene	4	ug/kg	52	19	93%	52	<10	NA
Dibenz(a.h)anthracene	4	ug/kg	15	7	73%	15	<10	NA
Indeno(1.2.3.cd)pyrene	4	ug/kg	46	17	92%	46	<10	NA
Sum of PAHs	4	ug/kg	927	325	96%	927	80	168%
Benzene	0.2	mg/kg	<0.2	<0.2	0%	<0.2	<0.5	0%
Toluene	0.2	mg/kg	<0.2	<0.2	0%	<0.2	<0.5	0%
Ethylbenzene	0.2	mg/kg	<0.2	<0.2	0%	<0.2	<0.5	0%
meta- & para-Xylene	0.2	mg/kg	<0.2	<0.2	0%	<0.2	<1.0	0%
ortho-Xylene	0.2	mg/kg	<0.2	<0.2	0%	<0.2	NT	0%
Fotal Xylenes	0.5	mg/kg	<0.5	<0.5	0%	<0.5	NT	0%
	0.2	mg/kg	<0.2	<0.2	0%	<0.2	<0.25	0%

- grey text denotes value below laboratory limit of reporting - grey fill denotes exceedance of multiple criteria

AME Pty Ltd Henderson Marine Support Base Table 2: Groundwater QC Results

				Sample ID	GW3	QC	
				-			
				Sample Matrix	Water	Water	
				Laboratory	MAFRL	MAFRL, ALS	
				Date Sampled	10/05/2017	10/05/2017	RPD
Analyte	LOR	Units	EQG (EPA 2017) - Moderate Protection	ANZECC & ARMCANZ (2000) - Marine Water			
Nutrients							
Total Nitrogen	50	ug.N/L		230	2900	2800	4%
Total Phosphorous	5	ug.P/L		20	14	13	7%
Inorganics							
Total Organic Carbon	0.5	mg.C/L			0.6	0.7	15%
Heavy Metals							
Total Copper	0.2	μg/L	8	3	0.3	NT	N/A
Total Mercury	0.0001	μg/L	1.4	0.7	<0.0001	NT	N/A
Total Lead	0.1	μg/L	12	6.6	<0.1	NT	N/A
Total Nickel	0.3	μg/L	560	200	<0.3	NT	N/A
Total Zinc	1	μg/L	43	23	<1	NT	N/A
Organics - normalised to 1% TOO							
Tributyltin (as Sn)	2	ngSn/L	50	20	<2	NT	N/A
Hydrocarbons - normalised to 1	% TOC			1			
Total Petroleum Hydrocarbons (sum)	50	μg/L			<50	NT	N/A
Naphthalene	0.02	μg/L	120	90	0.02	NT	N/A
Total Polycyclic Aromatic Hydrocarbons	0.005	μg/L			0.02	NT	N/A
Benzene	1	μg/L	1300	900	<1	NT	N/A
Toluene	2	μg/L			<2	NT	N/A
Ethylbenzene	2	μg/L			<2	NT	N/A
meta- & para-Xylene	2	μg/L			<2	NT	N/A
ortho-Xylene	2	μg/L			<2	NT	N/A
Total Xylenes	2	μg/L			<2	NT	N/A
BTEX (sum)	1	μg/L			<1	NT	N/A

Notes:

ANZECC & ARMCANZ (2000) South-west Australia marine-inshore (nutrients) and 90% species protection for slightly-moderately disturbed marine ecosystems (metals and organics)

EPA (2015) Environmental quality criteria reference document for Cockburn Sound - moderate protection

Acronyms:

LOR = limits of reporting
ug/L = micrograms per litre
mg.N/L = milligrams of nitrogen per litre
mg.P/g = milligrams of phosphorous per litre
mg.C/g = milligrams of carbon per litre

- = No criteria available

Font and Cells

- grey text denotes value below laboratory limit of reporting

AME Pty Ltd Henderson Marine Support Base Table 3: Sediment Analytical Results

								Sample ID	SD01	SD03	SD05
								Sample Matrix	Sediment	Sediment	Sediment
								Laboratory	MAFRL, ALS	MAFRL, ALS	MAFRL, ALS
								Date Sampled	10/05/2017	10/05/2017	10/05/2017
Analyte	LOR	Units	Screening Levels (NAGD 2009)	EQG (EPA 2017)	HIL-D (NEPM 2013)	EIL (NEPM 2013)	ISQG-Low (ANZECC 2000)	ISQG-High (ANZECC 2000)			
Nutrients										ı	I
Total Kjeldahl Nitrogen	0.1	mg.N/g							1.3	1.0	0.6
Total Phosphorous	0.05	mg.P/g							0.5	0.35	0.32
Inorganics											
Total Organic Carbon	0.2	% C							1.2	0.9	0.6
Heavy Metals											
Total Copper	0.2	mg/kg	65	65	240000	369	65	270	49	37	21
Total Mercury	0.01	mg/kg	0.15	0.15	730		0.15	1	0.04	0.03	0.01
Total Lead	0.1	mg/kg	50	50	1500	1800	50	220	17	13	6.9
Total Nickel	0.2	mg/kg	21	21	6000	610	21	52	9.9	1.8	2.2
Total Zinc	0.5	mg/kg	200	200	400000	1573	200	410	73	36	36
Organometallics											
Tributyltin (as Sn)	0.5	ug/kg	9	5			5	70	17.3	10.3	27.3
Organics										1	
Total Petroleum Hydrocarbons (sum)	3	mg/kg	550						34	56	62
Napthalene	5	ug/kg							<5	<5	<5
Sum of PAHs	4	ug/kg	10000	4000	4000		4000	45000	319	1030	642
BTEX (sum)	0.2	mg/kg							<0.2	<0.2	<0.2
Notes: Results expressed as dry weight I Organics and Organometallics an Acronyms: LOR = limits of reporting mg/kg = milligrams per kilogram mg/kg = milligrams of nitrogen r mg/kg = milligrams of phosphor C% = Carbon Percentage = No criteria available NT = Not Tested Font and Cells grey text denotes value below I	e normalise per gram ous per gra	m									

- grey text denotes value below laboratory limit of reporting - grey fill denotes exceedance of multiple criteria

360 Environmental Pty Ltd Page 1 of 1

AME Pty Ltd Henderson Marine Support Base Table 4: Groundwater Analytical Results

				Sample ID	GW3
				Sample Matrix	Water
				Laboratory	MAFRL, ALS
				Date Sampled	10/05/2017
Analyte	LOR	Units	EQG (EPA 2017) - Moderate Protection	ANZECC & ARMCANZ (2000) - Marine Water	
Nutrients					
Total Nitrogen	50	ug.N/L		230	2900
Total Phosphorous	5	ug.P/L		20	14
Inorganics					
Total Organic Carbon	0.5	mg.C/L			0.6
Heavy Metals					
Total Copper	0.2	μg/L	8	3	0.3
Total Mercury	0.0001	μg/L	1.4	0.7	<0.0001
Total Lead	0.1	μg/L	12	6.6	<0.1
Total Nickel	0.3	μg/L	560	200	<0.3
Total Zinc	1	μg/L	43	23	<1
Organometallics - normalised to	1% TOC	ı			
Tributyltin (as Sn)	2	ngSn/L	50	20	<2
Hydrocarbons - normalised to 1	% тос				
Total Petroleum Hydrocarbons (sum)	50	μg/L			<50
Naphthalene	0.02	μg/L	120	90	0.02
Total Polycyclic Aromatic Hydrocarbons	0.005	μg/L			0.02
Benzene	1	μg/L	1300	900	<1
Toluene	2	μg/L			<2
Ethylbenzene	2	μg/L			<2
meta- & para-Xylene	2	μg/L			<2
ortho-Xylene	2	μg/L			<2
Total Xylenes	2	μg/L			<2
BTEX (sum)	1	μg/L			<1

Notes:

ANZECC & ARMCANZ (2000) South-west Australia marine-inshore (nutrients) and 90% species protection for slightly-moderately disturbed marine ecosystems (metals and

organics)
EPA (2015) Environmental quality criteria reference document for Cockburn Sound - moderate protection

Acronyms:

LOR = limits of reporting
ug/L = micrograms per litre
mg.N/L = milligrams of nitrogen per litre
mg.P/g = milligrams of phosphorous per litre
mg.C/g = milligrams of carbon per litre

- = No criteria available

Font and Cells

- grey text denotes value below laboratory limit of reporting

APPENDIX A

Field Documentation

YSI CALIBRATION LOG

INSTRUMENT:

☐ YSI 1 05H1970 AC (Data Logger) 05K1045 AA (Sonde)

☐ YSI 2 6050000 (Data Logger) 605790-1 (Sonde)

CALIBRATION DETAILS

Sensor	Calibration Standard	Temp/Press Correction (Y/N)	Compensated Value (If corrected)	Required Accuracy	Pass	Fail	Comment/s
рН	12√ pH 4.00	(Ŷ/ N	рн 4.00	± 0.2	ď		
	pH 7.00	Ø/ N	pH 6.44	± 0.2			
	⊋ ∕ pH 10,00	Ø/ N	0.01 Hq	± 0,2	★		
Conductivity	☑ 1413 uS/cm	(√) / N	1389_us/cm	± 1%			
	12,88 mS/cm	(Y)/ N	11912 us/cm	± 1%	N.		
Salinity		above EC valu	ies	***			
Dîssolved Oxygen	☑ 100% Saturation	(Y)/ N				<u> </u>	
Redox	☐ Zorbels	Y	mV	±20mV			
Temperature	Factory calibrated	100	-	±0.15°C	Ø		
Battery Level	□ 0-25% □ 25-5	50% 🗆	50-75% D 75%-100	%		-	

This is to certify that this instrument has been calibrated in accordance with the manufacturer's calibration procedure as recommended in the instrument's service manual.

Signed:	elodle
Name:	Eleanor Liddle
Date:	09,05,17
Project:	

sol	IL BOR	E LC	G					360 environmental
PROJECT Name: AME Dredge	Soil Bor	e ID:	378	71		SHEET:	(of)	
PROJECT #: 1293	PROJEC		tion:	AME	_ 110	orde	reer	
Project Manager:	AOPC:		~	1110	- 110		Elevation mAH	D:
Client: ANG PTY LTD	Zone:		Easting:				Northing:	
Date: 10/5/17	Logged b	ov:	UN		Checked b	v:	1	
Drilled by:	Rig Type		-		Drilling Me		HannA	1 MO/
The state of the s			z				SAMPLE	9.
SOIL DESCRIPTION	1	90	유	1.0	FIEL	D	INTERVALS	
(i.e. soil type, colour, plasticity or particle		CL	\ \delta \	00	MONITO			COMMENTS
characteristics (size, grading, shape), secondary/minor	Ξ	표	S IS	돌호	10,400.0		(0.15 / 0.25 /	
soil component)	DEPTH	GRAPHIC LOG	CLASSIFICATION SYMBOL	DRILLING METHOD	NA-lations	nin.	0.5m	
		U	0 %	02	Moisture	PID	intervals)	
	1						102	
	thick 0.0							
Limostere Refusal at 0.1m								
21100-10 €	F							
000101	_							
Roll up ot U.IM	=							
1 egos as								
· ·	F							
				I //			=	
	=							
	1.0						=	
							_	
	=							
	1.0							
	=						=	
	=							
							=	
	=						_=	
	=							
			1					
	=						_	
	=							
	2.0						=	
					/ J		_	
							Lunlum	
	_							
						1.4	-	
							=	
	=							
							-	
	-						=	
					N		-	
							=	
		- 3		11			=	
	_						=	
							=	
							_	
	=	Ų II					=	
	E						=	
	3.0							
							-	
	_						_	
							=	
	=	1 44					-	
				Į II				
	=							
							_	
N.	_					Ų Ó		
/								
41	=						-	
	3.0						հավավավավակա	
	F		100					
F.O.B. m.hgl	=		1			2 4		

E.O.B: m bgl 4.0 | The Classification symbols are based on AS1726-1993. This log is however not intended for geotechnical uses

Abbreviations: E.O.B = End of Hole

m bgl = meters below ground level HA: Hand Auger, DP: Direct Push, SA: Solid flight Auger, D: Dry, M: Moist, W: Wet

Sediment Sampling

	C	2	
_	יי	י	$oldsymbol{-}$
env	iron	me	ntal
	Env	36 environ	36 environme

						-		
Project:	ME DR	actor a Ro	damoho	Project No.: (293				
Project Mana	- (ia Ubod			Project location:	na booch Rd		
Client: A	HE PRY	LTD		Date: 101517				
FIELD OBSE	RVATIONS							
Water Clarity:		Clear			Abnormalities:			
Wind Speed:		None						
Water State:		Still						
Weather:		Sum	-					
FIELD PARA	METERS							
Sampling Location	Sampling Depth	Easting	Northing	Sec	diment Description	Remarks		
SDOI	0.2m	383672	6442007	empark Epitenen	410 pagr 1891 68	5% shells		
2008	0.2m	383696	6442072	elayey e argula	MND block,88,18	organic odour		
8003	0.2m	383636	6442078	68 car SUND A	ackabaeun,38, gulan	10% sholls QC/XQCQ		
5004	0.2m	383645	6442107	SAND BY	och pan corre			
SDOZ	0.2m	383654	6442174	empara		rostdls.		
5006	0.2m	383678	6442157	68 Lon 3400 P	lock/brown, ic,	20% sholls		
S007	0.2m	383688	6442218		ukcange, gine, breundad	stable.		
		2						
Sampled By (Forn	Signature:				

Groundwater Low Flow Purging: Water Quality Meas.__ment Form

		Comments		JEON.	<u>.</u>	S							
	±10	±between readings		2	5	1							Legend:
20 Jan 19	ORP (mV)	Reading Hb		215,	85	25	200	Ť	Ť	T	Ť	7—	Leg
NA LE	+ 0.1	± between readings			6	5	<u></u>			4			
)): ground)	pH (unit)	Reading		2.9	710	17 61	7.4						
D: mbTOC): bTOC): en (mbTOC): creen (mbTOC) m above/belon less of LNAPI	3%8	% between readings											
Monitoring Well ID: Inner Diameter: Depth to Water (mbTOC): Depth of Well (mbTOC): Top of Well Screen (mbTOC): Bottom of Well Screen (mbTOC): Height of Riser*(m above/below ground) Presence & thickness of LNAPL:	Spec. Cond. (µS/cm)	Reading		JE34	1235	1241	1235	Î	Î				
2 - 00 - 0 1 1	10%	% between readings											
	D.O ⁴ (mg/L)	Reading		5.86,	24.4	4.30	4.23						
TID dryped:	3%	% between readings											
Total Volume	Temp (°C)	Reading		22.0,	22.1	12.7	22.2	Ť					
1 1 1 1 V		Purge rate (mL/min) ³											
Per Station Co. Co. Station Co.		Depth to groundwater (mbTOC) ²	Start:										
Client: Project: 360 Job No.: Location: 360 Field Representative: Date: Pump Type:		Tme1	Start:	12:10	12:15	02.21	12:28					SAMPLING:	Notes:

Notes:

¹ Readings to be collected every five minutes or greater.

² Drawdown should not exceed 9 cm ONCE first set of readings obtained. This allows for natural drawdown stabilisation to occur.

mbTOC= metres below top of casing DO = dissolved oxygen ORP = oxygen reduction potential

³ Must be such that the drawdown doesn't exceed 9 cm, or if it dose exceed, remains stabile.

⁴ 10% for values greater than 0.5 mg/L; if three DO values are less that 0.5 mg/L, consider these values as stabilised.

The depth to groundwater messurement must be recorded before SAMPLING

VOC samples must be collected first

Pump intake should be located within the screen interval & at the mid point of the saturated screnn length

* Gatio cover riser height should be a negative value
In the event that the recharge is very slow and the well runs dry, the readings may be collected at intervals of less than 5 minutes or for every litres purged
If a well runs dry, it is assumed that stabilisation will have occurred once the it has recharged and that samples can be collected straight after

A minimum of 4 readings are required, unless the well runs dry To calculate % difference, use the following equation: ((R2-R1)/((R2+R1)/2))*100

r3 (BH, 27/07/16)

Form F4

PROJECT FIELD LOG (DAILY)

Date: 10 5 17 Project Number: 193 Project Name: AME Rachambon
Arrived: 9:00 Departed: Weather: Suny
PM: Alysia Ubaduad
Field Personnel: Wareson Marnot
Contractors:
Client Contact: Site Contact:
Purpose of Visit (Tick Appropriate Box):
☐ Site Inspection ☐ Well Integrity Assessment
☐ Soil Bore Advancement (Drill Rig) Hand Augering ☐ Test Pits Soil Sampling
☐ Monitoring Well Installation (Drill Rig) ★Groundwater Monitoring ★ediment Sampling
☐ Sub-slab Vapour Probe Installation☐ Landfill Gas Well Installation ☐ Gas/ Vapour Sampling
☐ Remediation Works Oversight ☐ Other (Specify):
Equipment Used:
Vantan Saliment gradier, YSI, perioditic pump,
Rand Auper.
☐ Calibration Certificate Received :Calibration Undertaken:
Sampling:
Sampling Conducted: X
CoC Completed: XY □ N
Primary Lab: ALS MARRI Secondary Lab: NMT, ALS

Quality Control Details: QC **Primary** Media Type Date and time Dupliale Tripliale Dupliale QC 1 10/5/17 QC Q QC5 1012117 KN03 QC Collection Point | Collection Location | Date and time Rinsate water batch # RS RS RS RS RS Date and time Trip blank batch # QC TB TB TB TB TB QC Date and time Collection Location Blank water batch # FB FB FB FB FB

Description of Activities:
9.00 Meet with Sand x do site Induction
9:30 Finding except a drive to SDOT.
Cale to access is lacked - moving on to SDO?
SDORT
8003
SDO4 -allde
SDOS
SNG6-
11:00 SOO7 - P racks present, tryinponer lotimes
11:30 SDI - D WE long & Sample.
12:00 Start groundwater samplif
1:15pm: Leave site
1.35pm. Arrive of Murdank.
1.50pm Loque Mudoch

Monitoring Well ID	DTW (mBTOC)	DTB (mBTOC)	Construction (Gatic/Riser)	Casing height* (m above/below ground)	Condition
MWQ3	3.485			0.5	Gaso
MW	5.400	0	7007	-,3	
MW					
MW			-		
MW					To the second second
MW					
	(also referre	d to as flush	mount) riser h	eight should be a negative va	alue

APPENDIX B

Laboratory Certificates of Analysis

TECHNICAL

ChemCentre

Amended Report

PO Box 1250, Bentley Delivery Centre Accredited for compliance with ISO/IEC 17025, Accreditation No. 8 Bentley WA 6983 Purchase Order: 1293

T +61 8 9422 9800 F +61 8 9422 9801

Client Reference No: www.chemcentre.wa.gov.au

ABN 40 991 885 705

CoC No:

360 Environmental Pty Ltd

First Floor

ChemCentre Reference:

10 Bermondsey Street West Leederville WA 6007 Attention: Alysia Woodward

Report on: 1 sample received on 10/05/2017

16S2737 R4

LAB ID **Client ID and Description** Material

16S2737 / 001 sediment QC2

LAB ID 001 **Client ID** QC2

10/05/2017 Sampled

Analyte	Method	Unit	
Dibutyltin as Sn	eNR_35	ng/g	6.8
Monobutyltin as Sn	eNR_35	ng/g	4.0
Tributyltin as Sn	eNR_35	ng/g	5.8
Naphthalene	WL206_SL	mg/kg	<0.01
Acenaphthylene	WL206_SL	mg/kg	<0.01
Acenaphthene	WL206_SL	mg/kg	<0.01
Fluorene	WL206_SL	mg/kg	<0.01
Phenanthrene	WL206_SL	mg/kg	<0.01
Anthracene	WL206_SL	mg/kg	<0.01
Fluoranthene	WL206_SL	mg/kg	0.02
Pyrene	WL206_SL	mg/kg	0.01
Benzo(a)anthracene	WL206_SL	mg/kg	<0.01
Chrysene	WL206_SL	mg/kg	<0.01
Benzo(b+k)fluoranthene	WL206_SL	mg/kg	<0.02
Benzo(a)pyrene	WL206_SL	mg/kg	<0.01
Indeno(1,2,3,c,d)pyrene	WL206_SL	mg/kg	<0.01
Dibenzo(a,h)anthracene	WL206_SL	mg/kg	<0.01
Benzo(g,h,i)perylene	WL206_SL	mg/kg	<0.01
Total PAH (as above)	WL206_SL	mg/kg	<0.16
Benzene	WL244S	mg/kg	<0.5
Toluene	WL244S	mg/kg	<0.5
Ethylbenzene	WL244S	mg/kg	<0.5
Xylene	WL244S	mg/kg	<1.0
Total BTEX	WL244S	mg/kg	<2.5
TRH C6-C10	WL244S	mg/kg	<25
TRH >C10-C16	WL230206_S	mg/kg	<50
TRH >C16-C34	WL230206_S	mg/kg	<100
TRH >C34-C40	WL230206_S	mg/kg	<100
Copper	iMET2SAMS	mg/kg	25

16S2737 Page 1 of 2
 LAB ID
 001

 Client ID
 QC2

Sampled 10/05/2017

Method	Method Description
(combs)	Total carbon, total organic carbon (acid pretreatment), total inorganic carbon (calculation) and
,	Sulfur in soils by combustion, in-house method S57.
eNR 35	Organotin analysis outsourced to NMI
iHG1STVGA	Mercury in soils as received, digestion USEPA 3051 analysis by CVAAS.
iHG2STVG	Mercury (dry basis) in soil/sediments USEPA 3051A digestion and CV-AAS
iMET2SAICP	Acid digestable metals (dry wt basis) by digestion and ICPAES.
iMET2SAMS	Acid digestable metals (dry wt basis) by ICPMS.
WL132_Soil	Kjeldahl Nitrogen, Total Nitrogen, Protein and Ammonia in soil by digest and colorimetric method
WL206_SL	PAHs in soil GC-MS, SIM, MRM Low level
WL230206_S	Hydrocarbons in soil TPH, TRH, by GC-FID, less Nap
WL244S	BTEX, C6-C9 TPH and C6-C10 TRH by P&T GC-MS in soil

These results apply only to the sample(s) as received. Unless arrangements are made to the contrary, these samples will be disposed of after 30 days of the issue of this report.

This report may only be reproduced in full.

*Analysis not covered by scope of ChemCentre's NATA accreditation.

Elena Mcconville-Wolfe

Chemist

Scientific Services Division

12-Jun-2017

Karina Soukos Chemist

Scientific Services Division

16S2737 Page 2 of 2

ACCREDITED FOR TECHNICAL COMPETENCE

ChemCentre

Report of Examination

Accredited for compliance with ISO/IEC 17025, Accreditation No. 8

Purchase Order: 1293

ChemCentre Reference: 16S2737 R3

Client Reference No:

CoC No:

PO Box 1250, Bentley Delivery Centre
Bentley WA 6983
T +61 8 9422 9800
F +61 8 9422 9801
www.chemcentre.wa.gov.au

www.chemcentre.wa.gov.au ABN 40 991 885 705

360 Environmental Pty Ltd

First Floor

10 Bermondsey Street West Leederville WA 6007 **Attention: Alysia Woodward**

Report on: 1 sample received on 10/05/2017

LAB ID Material Client ID and Description

16S2737 / 001 sediment QC2

 LAB ID
 001

 Client ID
 QC2

Sampled 10/05/2017

Analyte	Method	Unit	
Dibutyltin as Sn	eNR_35	ng/g	6.8
Monobutyltin as Sn	eNR_35	ng/g	4.0
Tributyltin as Sn	eNR_35	ng/g	5.8
Naphthalene	WL206_SL	mg/kg	<0.01
Acenaphthylene	WL206_SL	mg/kg	<0.01
Acenaphthene	WL206_SL	mg/kg	<0.01
Fluorene	WL206_SL	mg/kg	<0.01
Phenanthrene	WL206_SL	mg/kg	<0.01
Anthracene	WL206_SL	mg/kg	<0.01
Fluoranthene	WL206_SL	mg/kg	0.02
Pyrene	WL206_SL	mg/kg	0.01
Benzo(a)anthracene	WL206_SL	mg/kg	<0.01
Chrysene	WL206_SL	mg/kg	<0.01
Benzo(b+k)fluoranthene	WL206_SL	mg/kg	<0.02
Benzo(a)pyrene	WL206_SL	mg/kg	<0.01
Indeno(1,2,3,c,d)pyrene	WL206_SL	mg/kg	<0.01
Dibenzo(a,h)anthracene	WL206_SL	mg/kg	<0.01
Benzo(g,h,i)perylene	WL206_SL	mg/kg	<0.01
Total PAH (as above)	WL206_SL	mg/kg	<0.16
Benzene	WL244S	mg/kg	<0.5
Toluene	WL244S	mg/kg	<0.5
Ethylbenzene	WL244S	mg/kg	<0.5
Xylene	WL244S	mg/kg	<1.0
Total BTEX	WL244S	mg/kg	<2.5
TRH C6-C10	WL244S	mg/kg	<25
TRH >C10-C16	WL230206_S	mg/kg	<50
TRH >C16-C34	WL230206_S	mg/kg	<100
TRH >C34-C40	WL230206_S	mg/kg	<100
Copper	iMET2SAMS	mg/kg	25

16S2737 Page 1 of 2

 LAB ID
 001

 Client ID
 QC2

Sampled 10/05/2017

Analyte	Method	Unit	
Lead	iMET2SAMS	mg/kg	9.4
Mercury	iMET2SAMS	mg/kg	0.20
Nickel	iMET2SAMS	mg/kg	2.1
Total Kjeldahl Nitrogen	WL132_Soil	mg/kg	860
Phosphorus	iMET2SAICP	mg/kg	280
Total Organic Carbon	(combs)	%	0.80
Zinc	iMET2SAMS	mg/kg	27
Date Extracted	WL230206_S		16/05/2017
Date Analysed	(combs)		16/5/2017
	eNR_35		24/5/2017
	iMET2SAICP		26/5/2017
	iMET2SAMS		26/5/2017
	WL132_Soil		30/5/2017
	WL206 SL		23/5/2017
	WL230206_S		22/5/2017
	WL244S		17/5/2017
Sample Condition			Cold

Method	Method Description
(combs)	Total carbon, total organic carbon (acid pretreatment), total inorganic carbon (calculation) and
	Sulfur in soils by combustion, in-house method S57.
eNR_35	Organotin analysis outsourced to NMI
iMET2SAICP	Acid digestable metals (dry wt basis) by digestion and ICPAES.
iMET2SAMS	Acid digestable metals (dry wt basis) by ICPMS.
WL132_Soil	Kjeldahl Nitrogen, Total Nitrogen, Protein and Ammonia in soil by digest and colorimetric method
WL206_SL	PAHs in soil GC-MS, SIM, MRM Low level
WL230206_S	Hydrocarbons in soil TPH, TRH, by GC-FID, less Nap
WL244S	BTEX, C6-C9 TPH and C6-C10 TRH by P&T GC-MS in soil

These results apply only to the sample(s) as received. Unless arrangements are made to the contrary, these samples will be disposed of after 30 days of the issue of this report.

This report may only be reproduced in full.

Elena Mcconville-Wolfe

Chemist

Scientific Services Division

6-Jun-2017

Karina Soukos Chemist

Scientific Services Division

16S2737 Page 2 of 2

^{*}Analysis not covered by scope of ChemCentre's NATA accreditation.

CHAIN OF CUSTODY

Phone: 93602907

Sample Preservation: None / Warm / (Cool) On Ice / Frozen / Acidified / Filtered / Other:

To: Marine and Freshwater Research Laboratory	From: 360 Environmental
Address: Murdoch University, Loading Zone 1,	Address: 10 Bermandsey St
Phys Sc Room 3.026, 90 South St, Murdoch 6150	West Leadorville
Phone: 08 93602907	Phone: 9388 8360 Fax: Mobile: 0477 466 181
Email:	Email: alusia wadward@ 3Wenunenmantal con.
Courier Details:	Job Number: 1293 PO/ Account #: QT-02002

Sample Type: Water / Bore / Fresh / Estuarine / Marine / Brine / Plant / Sediment) Soil / Other: Analysis Required Sampling Sample Asper Code No Date Quide Attachad 16S2737/001 QC Q 10/5/17 1 QC2 2 Sampled: 10 May 2017 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Relinquished by:	Date:	Time:	Received by:	Date:	Time	Job Number:
V.M	10.5.17	3.00 pm	1 Kevin Robin	10/05/17	15:00	1652737
Sample Condition		- 1 1 .				
Places colmoviados n		onl glass	riate quoting job nun	har and naturalise to	the condendar by for	

General Enquiries Ph: 1300 722 845 customerservice@measurement.gov.au www.measurement.gov.au ABN: 74 599 608 295

NATIONAL MEASUREMENT INSTITUTE QUOTATION

26 Dick Perry Ave, Kensington WA 6151

105 Delhi Rd, North Ryde NSW 2113 1/153 Bertie St, Port Melbourne VIC 3207

Quotation Number:

MURD03A-CQ1702W 02002 C

Date of Issue: Valid Until:

February 1, 2017 April 1, 2017

LIMS Reference (NMI use only)

QT-02002

Contact Name: Company:

Krzysztof Wienczugow - Manager MAFRL Marine and Freshwater Research Laboratory

ABN:

Street Address:

Murdoch University, 90 South Street, Murdoch Western Australia, 6150

Postal Address:

Telephone/Mobile: 61 8 9360 6907 M:0414 352907 email address: k.wienczugow@murdoch.edu.au

Customer Reference: Job / Project Reference:

marine sediment

Dear:

Kris

Thank you for the opportunity to quote for the analysis of

MATRIX	NO. OF SAMPLES	TEST	LIMIT OF REPORTING (mg/kg)	PRICE PER SAMPLE (excl. GST) \$	REFERENCE METHO
SEDIMENT	1				
	-	TKN	50 mg/kg	\$30.00	~
		TP	5 mg/kg	\$4.80	V
		TOC	0.01-0.02 %	\$48.00	V
		Total Metals:			V
		Metals digest	-	\$25.00	V,
	1000	Cu	0.5 mg/kg	\$4.80	
	(NCL)	Hg	0.1 mg/kg	\$4.80	1/
		Ni	1 mg/kg	\$4.80	V
		Pb	0.5 mg/kg	\$4.80	V
		Zn	1 mg/kg	\$4.80	V
		Moisture	0.1 g/100g	\$14.00	V
		PAH's low level NAGD	0.01 mg/kg	\$156.00	V
		TRH NEPM (C6-C40)	25, 50, 100, 100 mg/kg	\$75.00	V
		TBT's	0.5 ug/kg	\$204.00	V
		Sub-total per sample (excludes Handling Fee and GST)		\$580.80	

HANDLING FEE:	A standard Handling Fee of \$33.00 inclusive of GST (GST component \$3.00) applies per invoice.	\$33.00
MINIMUM INVOICE FEE:	A minimum Invoice of \$275 inclusive of GST applies. (Includes the \$33.00 handling fee).	\$275.00

COMMENTS & SPECIAL CONDITIONS

Please Note: LORs are targets only and may be revised if samples are found to contain substances which cause interferences, or if matrix effects become apparent during analysis

Please note minimum 1L of seawater is required for elutriate preparation

RECOMMENDED HOLDING TIME (RHT)

NMI will use their best efforts to commence preparation and analysis of samples within recommended holding time (RHT) provided that samples are delivered to the laboratory in an appropriate timeframe. NMI is not responsible for any breach of RHT.

SAMPLE DELIVERY

Please deliver samples to 26 Dick Perry Ave, Kensington WA 6151 with completed sample submission (chain of custody) form (attached)

Samples to be preserved in accordance with RHT requirements and securely packed in eskies during storage and transit to the Laboratory. Please do not submit samples to the laboratory until you have established a credit account

AGREED TURNAROUND TIME

Typically 10-15 working days from receipt at laboratory. Premiums will apply for fast TATs if available.

Fast TATs must be agreed to before dispatch of samples and requested in writing on the chain of custody / sample submission form.

Premiums applied to fast TATs:

Same day - 200% Premium, 24 hrs -100% Premium, 48 hrs - 50% Premium, 3-5 working days - 25% Premium

QUOTED BY: Carine Quah - Chemist DATE: 1/02/2017

National Measurement Institute

Job No.

Quote No.

Order No.

Sampled By

Date Sampled :

REPORT OF ANALYSIS

Page: 1 of 2 Report No. RN1159272

: CHEM06/170512/2

: QT-02029

: CLIENT

Date Received : 12-MAY-2017

Client : CHEMCENTRE

CORNER MANNING ROAD AND SOUTH ENTRANCE

OF CURTIN UNIVERSITY BENTLEY WA 6103

: JENNY MCGUIRE Attention

Project Name :

Your Client Services Manager : RICHARD COGHLAN Phone : (02) 94490161

Lab Reg No.	Sample Ref	Sample Description
N17/014004	16S2737/001	SEDIMENT

Lab Reg No.		N17/014004	
Sample Reference		16S2737/001	
	Units		Method
Organotins			
Monobutyltin as Sn	ng/g	4.0	NR_35
Dibutyltin as Sn	ng/g	6.8	NR_35
Tributyltin as Sn	ng/g	5.8	NR_35
Surrogate: Tripropyltin	%REC	94	NR_35
Dates			·
Date extracted		22-MAY-2017	
Date analysed		22-MAY-2017	

Danny Slee, Section Manager

Organic - NSW Accreditation No. 198

23-MAY-2017

Lab Reg No.		N17/014004		
Sample Reference		16S2737/001		
	Units			Method
Trace Elements				
Total Solids	%	77.1		NT2 49

Lisa Liu, Analyst Inorganics - NSW Accreditation No. 198

(in Ange

23-MAY-2017

REPORT OF ANALYSIS

Page: 2 of 2 Report No. RN1159272

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1159257 RN1159271

Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2133

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Fax: +61 2 9449 1653 www.measurement.gov.au

DBRISBANE 32 Shard Street Stafford OLD 4053
Phr 07 3243 7222 E. stamples, britabner@elegibah.com
IGCADSTONE 46 Callenandah Drave Cirton OLD 4680
Phr 07 7471 Stool E. galdskore@elegisglobal.com CADELAIDE 21 Burma Road Pooraka SA 5095 Ph; 08 8359 0850 E: adelaide@akglobal.com CHAIN OF CUSTODY THE MENT OF THE PARTY OF

DMELSOURNE 2.4 Westall Road Springvale VIC 3.771 Ph. 03 6549 9800 E. samples melbourne@atsglobal.com CMUDGEE 27 Sydney Road Mudgee NSW 2650 Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com OMACKAY 78 Harbour Road Mackay OLD 474C Ph; 07 4944 0177 E: mackay@alsglobal.com

CINEWCASTLE 5 Rose Gum Road Warabrook NSW 2304 Ph. 02 4968 9433 E: samples.newcastle@alsglobal.com CINOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 024403 2063 E: nowra@alsglobal.com EPERTH 10 Hod Way Malaga WA 6030 Ph. 08 9209 7655 E; samples.perth@alsglobal.

EMVOLLONGONG 99 Kenny Street Wollongong NSW 2600 Ph: 02 4225 3-251E, portkenible@alsglobal.com OSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph; 02 9794 85554E: samples.sydney@alsglobal.com OTOWNSVILLE 14-15 Desma Court Bohle QLD 4818: Ph. 07 4796 0800 £: townsville, anvicomental@alegiobal.

Work Order Reference EP1704830 Environmental Division Carrie R1-A-9209 765 Please check if ultra trace is required or not, as this is a soil sample colshy 1200 Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. Property Additional Information , auoudde;aj RECEIVED BY: FOR LABORATORY USE ONLY. Direle 7658 × × × ыон × ANALYSIS REQURED including SUITES (NB. Suite Codes must be listed to attract suite price). Where Metals are required, specify Total furilisers obtaits required, or Dissolved (field fiftered bottle required) or Dissolved (field fiftered bottle required). ouiz RELINQUISHED BY: ながら Copper, lead, mercury, nickel, 10/5 4:15 DATE/TIME: × × Suite GW1 $(\mathsf{TRH}\ \mathsf{UL})$ COC SEQUENCE NUMBER (Circle) Suite EP071-SD × × × × × (± 80) Suite EP080-SD × m (HAQ) N RECEIVED BY: Suite EP132B-SD × × × × DATE/TIME: Non Standard or urgent TAT (List due date): 2000 (181) <u>...</u> × Suite EP090 × × × × × × Standard TAT (List due date): Suite P-22 SAMPLE TETALS:
MATEX.SOLD (S) WATER (W) RELINQUISHED BY: соитьімека **JATOT** EP/565/17 DATE/TIME: TYPE & PRESERVATIVE (refer to codes below) TURNAROUND REQUIREM! (Standard TAT may be longer for some tests e.g., Ultra Trace **SAMPLER MOBILE: 0431157282** ALS QUOTE NO.: EDD FORMAT (or default): Seq XIATAM Sed pes Seq pəs Μ W CONTACT PH: DATE / TIME 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 10/05/2017 COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: Email Reports to: labresults@360environmental.com.au ALS Laboratory: please tick → Email invoice to: accounts@360envirormental.com.au OFFICE: 10 Bermandsey Streat, Vest Leederville PROJECT MANAGER: Alysia Woodward SD05 < SDO7 > 1003) 7 RW S SAMPLE ID 100 ON / 1033 SD02 MW03 90QS 5003 SD04 ပ္တ ဗ္ဗ CLIENT: 360 Environmental COC emailed to ALS? (YES PROJECT: AME Reclamation SAMPLER: Vanessa Mamet ORDER NUMBER: 1293 ALS 58.12 28 19 . ! d ھ. Ÿ ≫ 3 V

Water Container Cudess: P Liproserved Plastic: N. Nitric Preserved Plastic: ORC = Nitric Preserved CRC; SH = Sodium Hydroxide Preserved Plastic; AG = Amber Class Unpreserved Plastic; N. SH = Sodium Hydroxide Preserved Flastic; AG = Amber Class Unpreserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldeliyde Preserved Class Character Character Character Class Character Charac

QA/QC Compliance Assessment to assist with Quality Review

: EP1704830 **Work Order** Page : 1 of 9

: 1 Amendment

: Environmental Division Perth Client : 360 ENVIRONMENTAL PTY LTD Laboratory

Contact : ALYSIA WOODWARD Telephone : 08 9209 7631 : 10-May-2017 Project : 1293 AME Reclamation **Date Samples Received** Issue Date : 23-May-2017

Site

Sampler : VANESSA MAMET No. of samples received : 11 Order number : 1293 No. of samples analysed : 10

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Ouplicate (DUP) RPDs							
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Phenanthrene	85-01-8	48.0 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Fluoranthene	206-44-0	38.8 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Pyrene	129-00-0	40.0 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Benz(a)anthracene	56-55-3	36.0 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Chrysene	218-01-9	23.4 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Benzo(b+j)fluoranthene	205-99-2 205-82-3	48.0 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Benzo(e)pyrene	192-97-2	44.4 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Benzo(a)pyrene	50-32-8	44.6 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Benzo(g.h.i)perylene	191-24-2	35.0 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Indeno(1.2.3.cd)pyrene	193-39-5	34.3 %	0% - 20%	RPD exceeds LOR based limits
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830007	SD07	Sum of PAHs		38.6 %	0% - 20%	RPD exceeds LOR based limits
latrix Spike (MS) Recoveries							
EP090: Organotin Compounds	EP1704830002	SD02	Tributyltin	56573-85-4	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830002	SD02	Phenanthrene	85-01-8	60.4 %	70-130%	Recovery less than lower data quality
							objective
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830002	SD02	Benzo(b+j)fluoranthene	205-99-2 205-82-3	64.7 %	70-130%	Recovery less than lower data quality
							objective

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP132B: Polynuclear Aromatic Hydrocarbons	EP1704830010	GW3	Pyrene	129-00-0	196 %	0% - 20%	RPD exceeds LOR based limits
Laboratory Control Spike (LCS) Recoveries							
EP080: BTEXN	QC-887345-001		Ethylbenzene	100-41-4	114 %	84-113%	Recovery greater than upper control
							limit
EP080: BTEXN	QC-887345-001		ortho-Xylene	95-47-6	112 %	87-111%	Recovery greater than upper control
							limit

Regular Sample Surrogates

Sub-Matrix: SEDIMENT

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP132T: Base/Neutral Extractable Surrogates	EP1704830-003	SD03	2-Fluorobiphenyl	321-60-8	69.2 %	70-130 %	Recovery less than lower data quality
							objective

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Page : 3 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Ν	Л	at	tr	X:	s	o	IL

Quality Control Sample Type	C	Count Rate (%)		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Total Metals by ICP-AES	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Organotin Compounds (Soluble)	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	1	18	5.56	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Organotin Compounds (Soluble)	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method	Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA001: pH in soil using 0.01M CaCl	extract								
Soil Glass Jar - Unpreserved (EA001 SD01)	10-May-2017	16-May-2017	17-May-2017	✓	16-May-2017	16-May-2017	✓	
EA055: Moisture Content									
Soil Glass Jar - Unpreserved (EA055	i-103)								
SD01,	SD02,	10-May-2017				16-May-2017	24-May-2017	✓	
SD03,	SD04,								
SD05,	SD06,								
SD07,	QC1								
EA150: Soil Classification based on	Particle Size								
Snap Lock Bag - Subsampled by AL SD01	S (EA150H)	10-May-2017				18-May-2017	06-Nov-2017	1	
EA152: Soil Particle Density									
Snap Lock Bag - Subsampled by AL- SD01	S (EA152)	10-May-2017				18-May-2017	06-Nov-2017	✓	
ED008: Exchangeable Cations									
Soil Glass Jar - Unpreserved (ED008	9)								
SD01		10-May-2017	17-May-2017	07-Jun-2017	✓	17-May-2017	07-Jun-2017	✓	

Page : 4 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	in holding tin
Method		Sample Date	Ex	Analysis	Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
SD01		10-May-2017	17-May-2017	06-Nov-2017	✓	17-May-2017	06-Nov-2017	✓
EP080/071: Total Recoverable Hydroca	arbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071-SI								
SD01,	SD02,	10-May-2017	15-May-2017	24-May-2017	✓	15-May-2017	24-Jun-2017	✓
SD03,	SD04,							
SD05,	SD06,							
QC1								
Soil Glass Jar - Unpreserved (EP071-SI	D)							
SD07		10-May-2017	16-May-2017	24-May-2017	✓	16-May-2017	25-Jun-2017	✓
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071-SI	D)							
SD01,	SD02,	10-May-2017	15-May-2017	24-May-2017	✓	15-May-2017	24-Jun-2017	✓
SD03,	SD04,							
SD05,	SD06,							
QC1								
Soil Glass Jar - Unpreserved (EP080-SI	D)							
SD01,	SD02,	10-May-2017	15-May-2017	24-May-2017	1	17-May-2017	24-May-2017	✓
SD03,	SD04,							·
SD05,	SD06,							
QC1	5255,							
Soil Glass Jar - Unpreserved (EP071-SI	וח							
SD07	-,	10-May-2017	16-May-2017	24-May-2017	1	16-May-2017	25-Jun-2017	1
Soil Glass Jar - Unpreserved (EP080-SI	D)							•
SD07	•	10-May-2017	16-May-2017	24-May-2017	✓	17-May-2017	24-May-2017	✓
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080-SI						T		
SD01,	SD02,	10-May-2017	15-May-2017	24-May-2017	1	17-May-2017	24-May-2017	✓
SD03,	SD04,							•
SD05,	SD06,							
QC1	CB00 ,							
Soil Glass Jar - Unpreserved (EP080-SI	n)							
SD07	5)	10-May-2017	16-May-2017	24-May-2017	1	17-May-2017	24-May-2017	1
EP080-SD: BTEXN			_	,	_	-	,	
	D)		<u> </u>			1		
Soil Glass Jar - Unpreserved (EP080-SI SD01,	SD02.	10-May-2017	15-May-2017	24-May-2017	1	17-May-2017	24-May-2017	1
SD01, SD03,	SD02, SD04,	10 May-2017	.5	,	_		,	v
SD05,	SD06,							
QC1								
Soil Glass Jar - Unpreserved (EP080-SI	D)	40 May 2047	16 May 2047	24 May 2017		17 May 2017	24 May 2017	
SD07		10-May-2017	16-May-2017	24-May-2017	✓	17-May-2017	24-May-2017	✓

Page : 5 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP090: Organotin Compounds								
Soil Glass Jar - Unpreserved (EP090)								
SD01,	SD02,	10-May-2017	17-May-2017	24-May-2017	✓	18-May-2017	26-Jun-2017	✓
SD03,	SD04,							
SD05,	SD06,							
SD07								
EP132B: Polynuclear Aromatic Hydrod	carbons							
Soil Glass Jar - Unpreserved (EP132B-	SD)							
SD01,	SD02,	10-May-2017	15-May-2017	24-May-2017	✓	18-May-2017	24-Jun-2017	✓
SD03,	SD04,							
SD05,	SD06,							
QC1								
Soil Glass Jar - Unpreserved (EP132B-	SD)							
SD07		10-May-2017	16-May-2017	24-May-2017	✓	18-May-2017	25-Jun-2017	✓
Matrix: WATER					Evaluation	n: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocart	bons							
Amber Glass Bottle - Unpreserved (EPC	071)							
GW3		10-May-2017	15-May-2017	17-May-2017	✓	17-May-2017	24-Jun-2017	✓
Amber VOC Vial - Sulfuric Acid (EP080))							
GW3		10-May-2017	15-May-2017	24-May-2017	✓	15-May-2017	24-May-2017	✓
EP080/071: Total Recoverable Hydroc								
Amber Glass Bottle - Unpreserved (EPC	071)			47.14			04 1 0047	
GW3		10-May-2017	15-May-2017	17-May-2017	✓	17-May-2017	24-Jun-2017	✓
Amber VOC Vial - Sulfuric Acid (EP080))	40.84 . 0047	45.84 0045	24 May 2047		45.14. 0045	04 May 2047	
GW3		10-May-2017	15-May-2017	24-May-2017	✓	15-May-2017	24-May-2017	✓
EP080: BTEXN			ı					
Amber VOC Vial - Sulfuric Acid (EP080))			04.140047			04.140047	
GW3		10-May-2017	15-May-2017	24-May-2017	✓	15-May-2017	24-May-2017	✓
EP090: Organotin Compounds (Solubl	le)							
Amber Glass Bottle - Unpreserved (EPC	090S)							
GW3		10-May-2017	17-May-2017	17-May-2017	✓	18-May-2017	26-Jun-2017	✓
EP132B: Polynuclear Aromatic Hydrod	carbons							
Amber Glass Bottle - Unpreserved (EP1	132-LL)							
GW3		10-May-2017	15-May-2017	17-May-2017	✓	18-May-2017	24-Jun-2017	✓

Page : 6 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Exchangeable Cations with pre-treatment	ED008	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Moisture Content	EA055-103	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Organotin Analysis	EP090	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
pH in soil using a 0.01M CaCl2 extract	EA001	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TPH - Semivolatile Fraction	EP071-SD	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX in Sediments	EP080-SD	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Exchangeable Cations with pre-treatment	ED008	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Organotin Analysis	EP090	1	7	14.29	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	8	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
pH in soil using a 0.01M CaCl2 extract	EA001	2	5	40.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	1	100.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
TPH - Semivolatile Fraction	EP071-SD	2	8	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX in Sediments	EP080-SD	2	8	25.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)						_		
Exchangeable Cations with pre-treatment	ED008	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Organotin Analysis	EP090	1	7	14.29	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	8	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard	
TPH - Semivolatile Fraction	EP071-SD	2	8	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX in Sediments	EP080-SD	2	8	25.00	5.00		NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)						_		
Organotin Analysis	EP090	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard	
PAHs in Sediments by GCMS(SIM)	EP132B-SD	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	0	1	0.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
TPH - Semivolatile Fraction	EP071-SD	1	8	12.50	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX in Sediments	EP080-SD	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard	
	2. 000 02					•		
Matrix: WATER				Evaluatio		ntrol frequency i	not within specification; <pre></pre>	
Quality Control Sample Type	Mathad		ount		Rate (%)	Evaluation	Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Organotin Compounds (Soluble)	EP090S	0	1	0.00	10.00	<u>se</u>	NEPM 2013 B3 & ALS QC Standard	
PAH Compounds in Water	EP132-LL	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 7 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP) - Continued							
TRH - Semivolatile Fraction	EP071	1	18	5.56	10.00	se	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Organotin Compounds (Soluble)	EP090S	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Organotin Compounds (Soluble)	EP090S	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Organotin Compounds (Soluble)	EP090S	0	1	0.00	5.00	se	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	0	1	0.00	5.00	se	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Higginson 4B1 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Higginson (2011) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Organotin Analysis	EP090	SOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quantified against an established calibration curve.
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Organotin Compounds (Soluble)	EP090S	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by GC/MS coupled with high volume injection and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
PAH Compounds in Water	EP132-LL	WATER	In house: Referenced to USEAP SW846 8270D GCMS, LVI, Capillary column, SIM mode. This method is compliant with NEPM (2013) Schedule B(3)

Page : 9 of 9

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Higginson 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Sep. Funnel Extraction /Acetylation of Phenolic Compounds	ORG14-AC	WATER	In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.
Organotin Sample Preparation	ORG34	WATER	In house. A specified volume of sample is spiked with surrogate, acidified and vacuum filtered. Reagents and solvent are added and the mixture tumbled. The butyltin compounds is derivitisated, extracted and the subtitution reaction completed. The extract is transferred to a separatory funnel and further extracted two times with petroleum ether. The resultant extracts are combined and concentrated for analysis.

QUALITY CONTROL REPORT

Issue Date

23-May-2017

Work Order : **EP1704830** Page : 1 of 12

Amendment : 1

Client : 360 ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Perth

Contact : ALYSIA WOODWARD Contact : Luke Jones

Address : 10 Bermondsey St Address : 10 Hod Way Malaga WA Australia 6090

West Leederville 6007

 Telephone
 : +61 08 93210420
 Telephone
 : 08 9209 7631

 Project
 : 1293 AME Reclamation
 Date Samples Received
 : 10-May-2017

 Order number
 : 1293
 Date Analysis Commenced
 : 15-May-2017

Order number : 1293
C-O-C number :----

Sampler : VANESSA MAMET

Site : ----

Quote number : EP/565/17

No. of samples received : 11

No. of samples analysed : 10

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA
Jeremy Truong	Laboratory Manager	Perth Inorganics, Malaga, WA
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
ShukHui Li	Client Services - Technical Manager	Perth Organics, Malaga, WA
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA

Page : 2 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EA001: pH in soil us	sing 0.01M CaCl extract	(QC Lot: 889560)										
EP1704830-001	SD01	EA001: pH (CaCl2)		0.1	pH Unit	7.9	7.9	0.00	0% - 20%			
EA055: Moisture Co	ontent (QC Lot: 890066)											
EP1704830-001	SD01	EA055-103: Moisture Content (dried @ 103°C)		1	%	36.0	36.4	0.975	0% - 20%			
ED008: Exchangeat	ole Cations (QC Lot: 889	582)										
EP1704830-001	SD01	ED008: Exchangeable Calcium		0.1	meq/100g	27.1	26.8	1.21	0% - 20%			
		ED008: Exchangeable Magnesium		0.1	meq/100g	4.0	3.8	7.36	0% - 20%			
		ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.00	No Limit			
		ED008: Exchangeable Sodium		0.1	meq/100g	0.6	0.6	0.00	No Limit			
EG005T: Total Meta	Is by ICP-AES (QC Lot:	891708)										
EP1704830-001	SD01	EG005T: Iron	7439-89-6	50	mg/kg	0.489	4410	10.4	0% - 20%			
EP080-SD / EP071-S	SD: Total Petroleum Hydi	ocarbons (QC Lot: 882934)										
EP1704830-001	SD01	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%			
EP080-SD / EP071-S	D: Total Petroleum Hydi	ocarbons (QC Lot: 882936)										
EP1704830-001	SD01	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit			
		EP071-SD: C15 - C28 Fraction		3	mg/kg	22	25	14.2	No Limit			
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	41	45	9.30	0% - 50%			
		EP071-SD: C29 - C36 Fraction		5	mg/kg	19	20	0.00	No Limit			
EP080-SD / EP071-S	D: Total Petroleum Hydi	ocarbons (QC Lot: 885606)										
EP1704830-007	SD07	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%			
EP080-SD / EP071-S	D: Total Petroleum Hydi	ocarbons (QC Lot: 885630)										
EP1704830-007	SD07	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit			
		EP071-SD: C15 - C28 Fraction		3	mg/kg	33	33	0.00	0% - 50%			
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	58	56	3.51	0% - 50%			

Page : 3 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-9	SD: Total Petroleum Hy	drocarbons (QC Lot: 885630) - continued							
EP1704830-007	SD07	EP071-SD: C29 - C36 Fraction		5	mg/kg	25	23	7.55	No Limit
EP080-SD / EP071-S	SD: Total Recoverable F	lydrocarbons (QC Lot: 882934)							
EP1704830-001	SD01	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S	SD: Total Recoverable H	lydrocarbons (QC Lot: 882936)							
EP1704830-001	SD01	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	37	41	9.66	0% - 50%
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	46	52	12.2	0% - 50%
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	9	11	17.7	No Limit
EP080-SD / EP071-S	SD: Total Recoverable H	lydrocarbons (QC Lot: 885606)							
EP1704830-007	SD07	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
		lydrocarbons (QC Lot: 885630)		-					
EP1704830-007	SD07			3	ma/ka	<3	<3	0.00	No Limit
EF1704630-007	3007	EP071-SD: >C10 - C16 Fraction		3	mg/kg mg/kg	53	51	2.99	0% - 50%
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	70	69	1.44	0% - 30%
		EP071-SD: >C10 - C40 Fraction (sum)		5	mg/kg	17	18	7.84	No Limit
EDAGO OD DEEVAL	(OO I - (- 00000 4)	EP071-SD: >C34 - C40 Fraction		<u> </u>	mg/kg	17	10	7.04	NO LITTIC
EP080-SD: BTEXN	· ·		74.40.0				2.0	2.22	20/ 20/
EP1704830-001	SD01	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3	0.0		40.0	<0.2	0.00	00/ 00/
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2 <0.5	<0.2	0.00	0%2% 0%2%
		EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.2	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EDAGA OD DEEVAL	(001 / 007000)	EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP080-SD: BTEXN	<u>` </u>								
EP1704830-007	SD07	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EDOOG OD UU VUI	106-42-3 95-47-6	0.2	ma/lea	<0.2	<0.2	0.00	0%2%
		EP080-SD: ortho-Xylene	1330-20-7	0.2	mg/kg	<0.5	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes		0.2	mg/kg			0.00	
		EP080-SD: Sum of BTEX	91-20-3	0.2	mg/kg	<0.2 <0.2	<0.2 <0.2	0.00	0%2% 0%2%
EDOGO O U		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	~ U.2	< 0.2	0.00	U70Z70
	Compounds (QC Lot: 89				- :				
EP1704830-004	SD04	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	3.9	4.4	12.3	No Limit
	ar Aromatic Hydrocarbo	ons (QC Lot: 882937)							
EP1704830-001	SD01	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	4	0.00	No Limit

Page : 4 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Laboratory I	t				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocarb	ons (QC Lot: 882937) - continued							
EP1704830-001	SD01	EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	5	<4	25.8	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	6	5	25.2	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	24	142	No Limit
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	64	58	10.9	0% - 50%
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	53	44	18.1	0% - 50%
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	41	37	8.66	0% - 50%
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	17	12	33.4	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	56	41	31.8	0% - 50%
		, ,	205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	12	7	47.7	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	21	17	19.6	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	38	31	19.5	No Limit
		EP132B-SD: Perylene	198-55-0	4	μg/kg	4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	27	22	16.8	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	9	8	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	23	20	15.3	No Limit
		EP132B-SD: Sum of PAHs		4	μg/kg	383	337	12.8	0% - 20%
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	7	7	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarb	ons (QC Lot: 885629)							
EP1704830-007	SD07	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	9	10	13.4	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	28	12	78.5	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	15	16	7.18	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	125	# 76	48.0	0% - 20%
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	266	# 180	38.8	0% - 20%
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	217	# 145	40.0	0% - 20%
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	144	# 100	36.0	0% - 20%
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	126	# 100	23.4	0% - 20%
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	244	# 149	48.0	0% - 20%
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	78	57	30.1	0% - 50%
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	101	# 64	44.4	0% - 20%
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	177	# 112	44.6	0% - 20%
		EP132B-SD: Perylene	198-55-0	4	μg/kg	33	21	45.7	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	114	# 80	35.0	0% - 20%
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	32	21	42.4	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	95	# 67	34.3	0% - 20%

Page : 5 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocark	oons (QC Lot: 885629) - continued							
EP1704830-007	SD07	EP132B-SD: Sum of PAHs		4	μg/kg	1830	# 1240	38.6	0% - 20%
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	12	79.2	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	25	18	35.0	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	etroleum Hydrocarbon								
EP1704838-005	Anonymous	EP071: C15 - C28 Fraction		100	μg/L	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	μg/L	<50	<50	0.00	No Limit
		EP071: C29 - C36 Fraction		50	μg/L	<50	<50	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbon	s (QC Lot: 887345)							
EP1704810-003	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
EP1704810-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 882988)							
EP1704838-005	Anonymous	EP071: >C10 - C16 Fraction		100	μg/L	<100	<100	0.00	No Limit
		EP071: >C16 - C34 Fraction		100	μg/L	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	μg/L	<100	<100	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 887345)							
EP1704810-003	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	μg/L	<20	<20	0.00	No Limit
EP1704810-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	-	El coo. co e la l'adion			13				
EP1704810-003	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
21 170 10 10 000	, wilding mode	EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
		Zi coci mota a para 7,510.10	106-42-3		10				
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
EP1704810-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocart	oons (QC Lot: 882995)							
EP1704830-010	GW3	EP132-LL: Benzo(a)pyrene	50-32-8	0.005	μg/L	<0.005	<0.005	0.00	No Limit
		EP132-LL: Total PAH		0.005	μg/L	0.020	<0.005	120	No Limit
		EP132-LL: Benzo(a)pyrene TEQ (zero)		0.005	μg/L	<0.005	<0.005	0.00	No Limit

Page : 6 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP132B: Polynuclea	r Aromatic Hydrocarbons	(QC Lot: 882995) - continued									
EP1704830-010	GW3	EP132-LL: Naphthalene	91-20-3	0.02	μg/L	0.02	<0.02	0.00	No Limit		
		EP132-LL: Acenaphthylene	208-96-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Acenaphthene	83-32-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Fluorene	86-73-7	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Phenanthrene	85-01-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Anthracene	120-12-7	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Fluoranthene	206-44-0	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Pyrene	129-00-0	0.02	μg/L	<2.00	# < 0.02	196	0% - 20%		
		EP132-LL: Benz(a)anthracene	56-55-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Chrysene	218-01-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Benzo(b+j)fluoranthene	205-99-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
			205-82-3								
		EP132-LL: Benzo(k)fluoranthene	207-08-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Indeno(1.2.3.cd)pyrene	193-39-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Dibenz(a.h)anthracene	53-70-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP132-LL: Benzo(g.h.i)perylene	191-24-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit		

Page : 7 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB) Laboratory Control Spike (LCS) Report						
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA001: pH in soil using 0.01M CaCl extract (QCLot: 889560)							
EA001: pH (CaCl2)		pH Unit		4 pH Unit	100	99	101
				7 pH Unit	100	99	101
ED008: Exchangeable Cations (QCLot: 889582)							
ED008: Exchangeable Calcium	0.1	meq/100g	<0.1	10.925 meq/100g	104	91	109
ED008: Exchangeable Magnesium	0.1	meq/100g	<0.1	5.9518 meq/100g	107	89	111
ED008: Exchangeable Potassium	0.1	meq/100g	<0.1	0.4769 meq/100g	87.1	79	116
ED008: Exchangeable Sodium	0.1	meq/100g	<0.1	0.8718 meq/100g	82.1	75	118
ED008: Cation Exchange Capacity	0.1	meq/100g	<0.1	18.2255 meq/100g	104	88	110
EG005T: Total Metals by ICP-AES (QCLot: 891708)							
EG005T: Iron 7439-89-6	50	mg/kg	<50	34900 mg/kg	104	70	120
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLot: 882934)							
EP080-SD: C6 - C9 Fraction	3	mg/kg	<3	800 mg/kg	73.0	70	130
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLot: 882936)							
EP071-SD: C10 - C14 Fraction	3	mg/kg	<3	138 mg/kg	108	70	130
EP071-SD: C15 - C28 Fraction	3	mg/kg	<3	290 mg/kg	106	70	130
EP071-SD: C29 - C36 Fraction	5	mg/kg	<5	51 mg/kg	98.4	70	130
EP071-SD: C10 - C36 Fraction (sum)	3	mg/kg	<3				
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLot: 885606)							
EP080-SD: C6 - C9 Fraction	3	mg/kg	<3	800 mg/kg	82.9	70	130
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLot: 885630)				3 3			
EP071-SD: C10 - C14 Fraction	3	mg/kg	<3	138 mg/kg	104	70	130
EP071-SD: C15 - C28 Fraction	3	mg/kg	<3	290 mg/kg	104	70	130
EP071-SD: C29 - C36 Fraction	5	mg/kg	<5	51 mg/kg	102	70	130
EP071-SD: C10 - C36 Fraction (sum)	3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons (QCLot: 882934)			-				
EP080-SD: C6 - C10 Fraction C6_C10	3	mg/kg	<3	925 mg/kg	79.6	70	130
		mg/kg	40	020 mg/kg	70.0	70	100
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons (QCLot: 882936)	3	ma/ka	<3	202 mg/kg	108	70	130
EF 07 1-3D. PC 10 - C10 1 Taction	3	mg/kg	<3	202 mg/kg 258 mg/kg	104	70	130
El 071-08. 2010 - 034 Fraction	5	mg/kg	<5 <5		95.8	70	130
El 071-0D. 2004 - 04011 action	3	mg/kg	<3	18 mg/kg			
EP071-SD: >C10 - C40 Fraction (sum)	3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons (QCLot: 885606)							
EP080-SD: C6 - C10 Fraction C6_C10	3	mg/kg	<3	925 mg/kg	84.2	70	130

Page : 8 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) I		S) Report	Report		
				Report	Spike	Spike Recovery (%)	70 70 70 70 70 70 70 70 70 70 70 70 70 7	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080-SD / EP071-SD: Total Recoverable Hydro	carbons (QCLot: 885630)									
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	202 mg/kg	105	70	130		
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	258 mg/kg	103	70	130		
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	18 mg/kg	103	70	130		
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3						
EP080-SD: BTEXN (QCLot: 882934)										
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	50 mg/kg	123	70	130		
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	50 mg/kg	103	70	130		
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	50 mg/kg	104	70	130		
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	100 mg/kg	102	70	130		
	106-42-3									
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	50 mg/kg	99.2	70	130		
EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.2						
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2						
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	50 mg/kg	108	70	130		
EP080-SD: BTEXN (QCLot: 885606)										
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	50 mg/kg	91.9	70	130		
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	50 mg/kg	90.0	70	130		
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	50 mg/kg	92.7	70	130		
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	100 mg/kg	90.5	70	130		
	106-42-3									
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	50 mg/kg	89.4	70	130		
EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.2						
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2						
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	50 mg/kg	109	70	130		
EP090: Organotin Compounds (QCLot: 891707)										
EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	105	52	139		
EP132B: Polynuclear Aromatic Hydrocarbons (0	OCLot: 882937)									
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	102	55	131		
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5						
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	88.1	64	110		
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	87.1	62	112		
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	87.6	64	118		
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	90.1	59	117		
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	88.7	69	111		
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	87.8	66	118		
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	98.3	70	116		
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	89.8	59	121		
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	90.7	68	116		

Page : 9 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (QCI	_ot: 882937) - continued							
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	<4	25 μg/kg	83.7	51	107
	205-82-3							
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	92.1	52	118
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4				
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	103	55	111
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4				
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	77.8	62	106
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	81.0	35	141
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	80.7	48	122
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5				
EP132B-SD: Sum of PAHs		4	μg/kg	<4				
EP132B: Polynuclear Aromatic Hydrocarbons (QCI	_ot: 885629)							
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	79.9	55	131
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5				
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	99.3	64	110
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	92.7	62	112
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	94.3	64	118
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	87.3	59	117
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	94.8	69	111
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	100	66	118
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	112	70	116
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	93.5	59	121
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	85.4	68	116
EP132B-SD: Benzo(b+i)fluoranthene	205-99-2	4	μg/kg	<4	25 μg/kg	80.2	51	107
	205-82-3		100		100			
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	94.8	52	118
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4				
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	78.4	55	111
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4				
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	75.7	62	106
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	86.2	35	141
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	82.2	48	122
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5				
EP132B-SD: Sum of PAHs		4	μg/kg	<4				
				Mothod Plants (MP)		Laboratory Control Snike // CS	C) Poport	
Sub-Matrix: WATER				Method Blank (MB) Report	Spike	Laboratory Control Spike (LCS Spike Recovery (%)	-	Limits (%)
Mathadt Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Method: Compound EP080/071: Total Petroleum Hydrocarbons (QCLot:		LON	Oint	Nesun	Concentration	LUS	LOW	riigii

Page : 10 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 882988) - continued								
EP071: C10 - C14 Fraction	50	μg/L	<50	400 μg/L	69.1	35	95	
EP071: C15 - C28 Fraction	100	μg/L	<100	400 μg/L	91.2	34	111	
EP071: C29 - C36 Fraction	50	μg/L	<50	400 μg/L	92.5	34	105	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 887345)								
EP080: C6 - C9 Fraction	20	μg/L	<20	320 μg/L	106	74	113	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 882988)							
EP071: >C10 - C16 Fraction	100	μg/L	<100	400 μg/L	74.9	37	99	
EP071: >C16 - C34 Fraction	100	μg/L	<100	600 μg/L	92.7	35	108	
EP071: >C34 - C40 Fraction	100	μg/L	<100	200 μg/L	100	11	117	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	CL of: 887345)							
EP080: C6 - C10 Fraction C6_C10	20	μg/L	<20	370 µg/L	108	74	115	
EP080: BTEXN (QCLot: 887345)				10				
EP080: Benzene 71-43-2	1	μg/L	<1	20 μg/L	112	84	114	
EP080: Toluene 108-88-3	2	μg/L	<2	20 μg/L	107	81	115	
EP080: Ethylbenzene 100-41-4	2	μg/L	<2	20 μg/L	# 114	84	113	
EP080: meta- & para-Xylene 108-38-3	2	μg/L	<2	40 μg/L	113	84	114	
106-42-3	_	P9/ L	-	10 µg/L	110	01		
EP080: ortho-Xylene 95-47-6	2	μg/L	<2	20 μg/L	# 112	87	111	
EP080: Naphthalene 91-20-3	5	μg/L	<5	20 μg/L	109	77	118	
EP090: Organotin Compounds (Soluble) (QCLot: 890603)								
EP090S: Tributyltin 56573-85-4	2	ngSn/L	<2	147 ngSn/L	74.1	20	125	
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 882995)				-				
EP132-LL: Naphthalene 91-20-3	0.02	μg/L	<0.02	0.025 μg/L	73.6	42	136	
EP132-LL: Acenaphthylene 208-96-8	0.02	μg/L	<0.02	0.025 μg/L	69.7	40	124	
EP132-LL: Acenaphthene 83-32-9	0.02	μg/L	<0.02	0.025 μg/L	72.5	42	128	
EP132-LL: Fluorene 86-73-7	0.02	μg/L	<0.02	0.025 μg/L	69.2	48	126	
EP132-LL: Phenanthrene 85-01-8	0.02	μg/L	<0.02	0.025 μg/L	75.1	59	125	
EP132-LL: Anthracene 120-12-7	0.02	μg/L	<0.02	0.025 μg/L	74.9	45	117	
EP132-LL: Fluoranthene 206-44-0	0.02	μg/L	<0.02	0.025 μg/L	80.9	60	120	
EP132-LL: Pyrene 129-00-0	0.02	μg/L	<0.02	0.025 μg/L	85.0	63	121	
EP132-LL: Benz(a)anthracene 56-55-3	0.02	μg/L	<0.02	0.025 μg/L	73.9	65	133	
EP132-LL: Chrysene 218-01-9	0.02	μg/L	<0.02	0.025 μg/L	73.8	56	124	
EP132-LL: Benzo(b+j)fluoranthene 205-99-2	0.02	μg/L	<0.02	0.025 μg/L	73.2	55	131	
205-82-3								
EP132-LL: Benzo(k)fluoranthene 207-08-9	0.02	μg/L	<0.02	0.025 μg/L	79.6	45	125	
EP132-LL: Benzo(a)pyrene 50-32-8	0.005	μg/L	<0.005	0.025 μg/L	89.9	53	111	
EP132-LL: Indeno(1.2.3.cd)pyrene 193-39-5	0.02	μg/L	<0.02	0.025 μg/L	74.1	58	122	
EP132-LL: Dibenz(a.h)anthracene 53-70-3	0.02	μg/L	<0.02	0.025 μg/L	79.2	59	121	

Page : 11 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 882995) - continu	ed						
EP132-LL: Benzo(g.h.i)perylene	191-24-2	0.02	μg/L	<0.02	0.025 μg/L	84.1	50	134
EP132-LL: Total PAH		0.005	μg/L	<0.005				
EP132-LL: Benzo(a)pyrene TEQ (zero)		0.005	μg/L	<0.005				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080-SD / EP071	-SD: Total Petroleum Hydrocarbons (QCLot: 882934)						
EP1704830-002	SD02	EP080-SD: C6 - C9 Fraction		600 mg/kg	82.4	70	130
P080-SD / EP071	-SD: Total Petroleum Hydrocarbons (QCLot: 882936)						
EP1704830-002	SD02	EP071-SD: C10 - C14 Fraction		138 mg/kg	91.0	70	130
		EP071-SD: C15 - C28 Fraction		290 mg/kg	95.7	70	130
		EP071-SD: C29 - C36 Fraction		51 mg/kg	93.2	70	130
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot: 882934	9)					
EP1704830-002	SD02	EP080-SD: C6 - C10 Fraction	C6_C10	725 mg/kg	85.2	70	130
EP080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot: 882936	5)					
EP1704830-002	SD02	EP071-SD: >C10 - C16 Fraction		202 mg/kg	92.7	70	130
		EP071-SD: >C16 - C34 Fraction		258 mg/kg	95.1	70	130
		EP071-SD: >C34 - C40 Fraction		18 mg/kg	98.0	70	130
EP080-SD: BTEXN	(QCLot: 882934)						
EP1704830-002	SD02	EP080-SD: Benzene	71-43-2	50 mg/kg	109	70	130
		EP080-SD: Toluene	108-88-3	50 mg/kg	104	70	130
EP090: Organotin	Compounds (QCLot: 891707)						
EP1704830-002	SD02	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	# Not Determined	20	130
EP132B: Polynucl	ear Aromatic Hydrocarbons (QCLot: 882937)						
EP1704830-002	SD02	EP132B-SD: Naphthalene	91-20-3	25 μg/kg	93.0	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	106	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 μg/kg	94.5	70	130
		EP132B-SD: Fluorene	86-73-7	25 μg/kg	90.4	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	# 60.4	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	126	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	85.4	70	130

Page : 12 of 12

Work Order : EP1704830 Amendment 1
Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Sub-Matrix: SOIL	b-Matrix: SOIL		Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P132B: Polynucl	ear Aromatic Hydrocarbons (QCLot: 882937) - co	ontinued					
EP1704830-002	SD02	EP132B-SD: Pyrene	129-00-0	25 μg/kg	74.8	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	81.7	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	73.0	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 μg/kg	# 64.7	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	100	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 μg/kg	79.3	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 μg/kg	84.0	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 μg/kg	85.8	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 μg/kg	84.7	70	130
b-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 882988)						
EP1704838-005	Anonymous	EP071: C10 - C14 Fraction		400 μg/L	65.3	45	122
		EP071: C15 - C28 Fraction		400 μg/L	80.5	55	143
		EP071: C29 - C36 Fraction		400 μg/L	86.7	54	128
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 887345)						
EP1704810-002	Anonymous	EP080: C6 - C9 Fraction		240 μg/L	83.2	77	137
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	s (QCLot: 882988)					
P1704838-005	Anonymous	EP071: >C10 - C16 Fraction		400 μg/L	69.4	45	122
	•	EP071: >C16 - C34 Fraction		600 μg/L	83.6	55	143
		EP071: >C34 - C40 Fraction		200 μg/L	92.5	54	128
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	s (QCLot: 887345)					
P1704810-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	290 μg/L	89.0	77	137
P080: BTEXN (Q	CLot: 887345)						
EP1704810-002	Anonymous	EP080: Benzene	71-43-2	20 μg/L	92.0	77	122
		EP080: Toluene	108-88-3	20 μg/L	89.1	74	126

CERTIFICATE OF ANALYSIS

Work Order : EP1704830 Page : 1 of 11

Amendment : 1

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : 1293 AME Reclamation

Order number : 1293 C-O-C number

Sampler : VANESSA MAMET

Site

Quote number : EP/565/17

No. of samples received : 11 No. of samples analysed : 10

Laboratory : Environmental Division Perth

Contact : Luke Jones

: 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7631

Date Samples Received : 10-May-2017 17:00

Date Analysis Commenced : 15-May-2017

Issue Date : 23-May-2017 17:19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA
Jeremy Truong	Laboratory Manager	Perth Inorganics, Malaga, WA
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
ShukHui Li	Client Services - Technical Manager	Perth Organics, Malaga, WA
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA

Page : 2 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

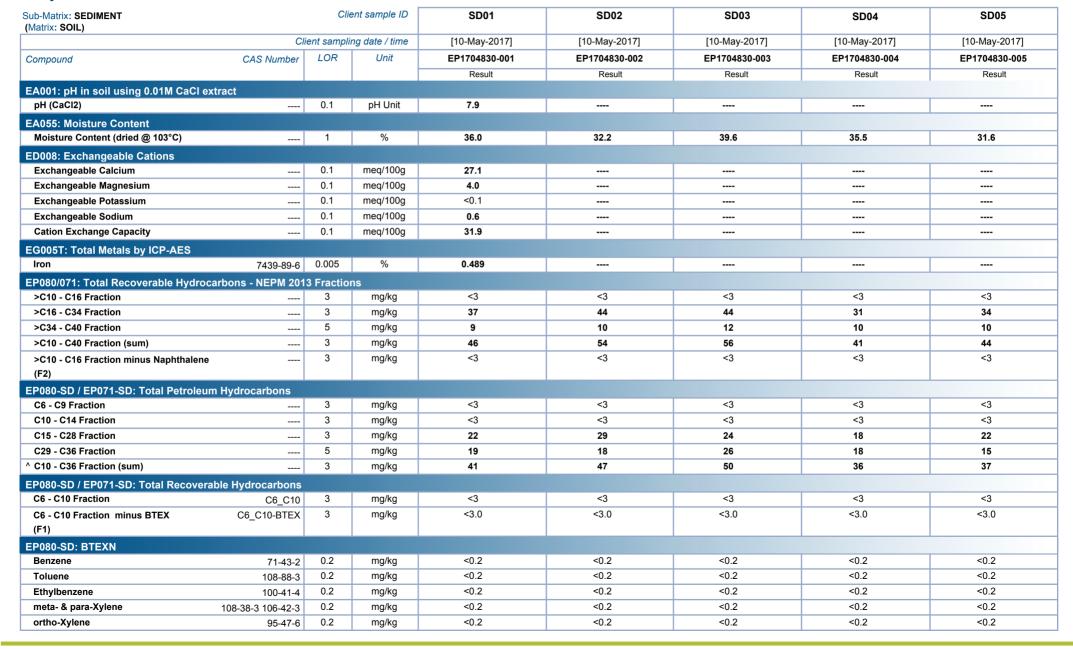
When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- TBT conducted by ALS Brisbane, NATA Site No. 818.
- Metals conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- EP132-LL: LOR has been raised for sample "GW3" for "Pyrene" due to suspected matrix effects and interferences.
- EP132-SD: Poor matrix spike recovery and duplicate precision on QC sample; due to heterogenity, suspected matrix effects and high moisture content.
- EP132-SD: Poor surrogate recovery for various samples due to suspected matrix effects and interferences.
- Amendment (23/05/2017): This report has been amended following changes to the analytical data reported. The quality system is being utilised to resolve this issue. The specific data affected includes sample "SD03" EP132-SD results.
- EP090: Particular samples required dilution prior to extraction due to matrix interferences. LOR values have been adjusted accordingly and surrogate recovery not determined.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

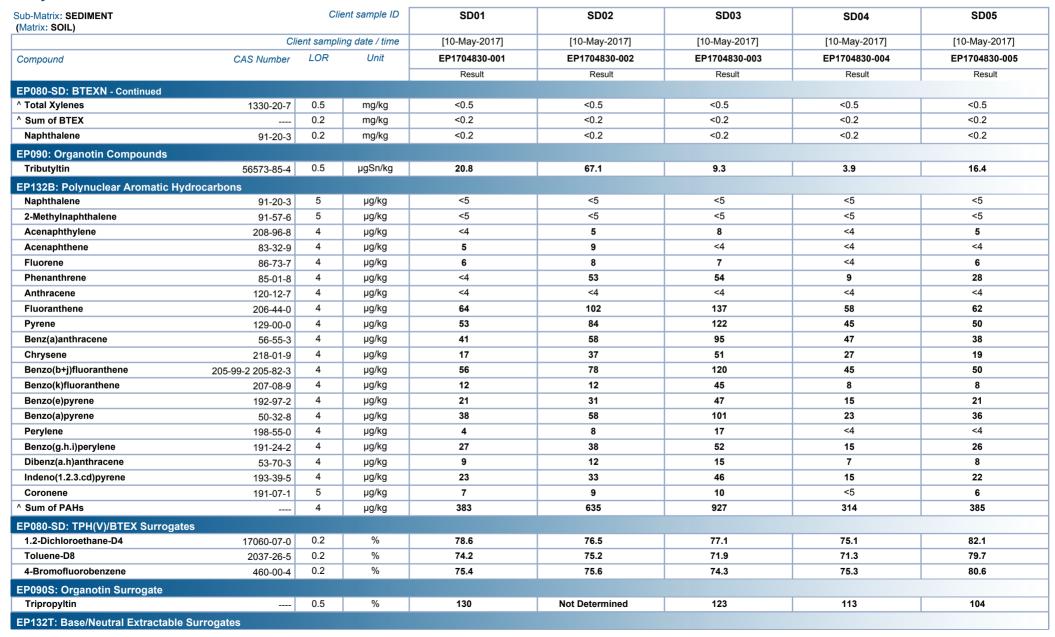


Page : 3 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

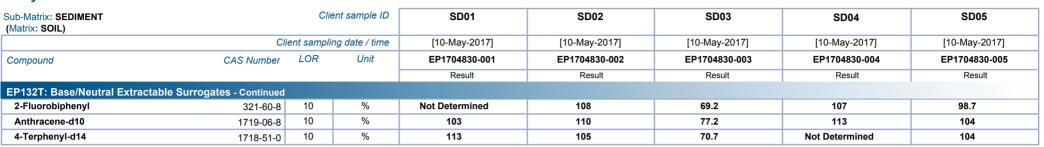


Page : 4 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project · 1293 AME Reclamation

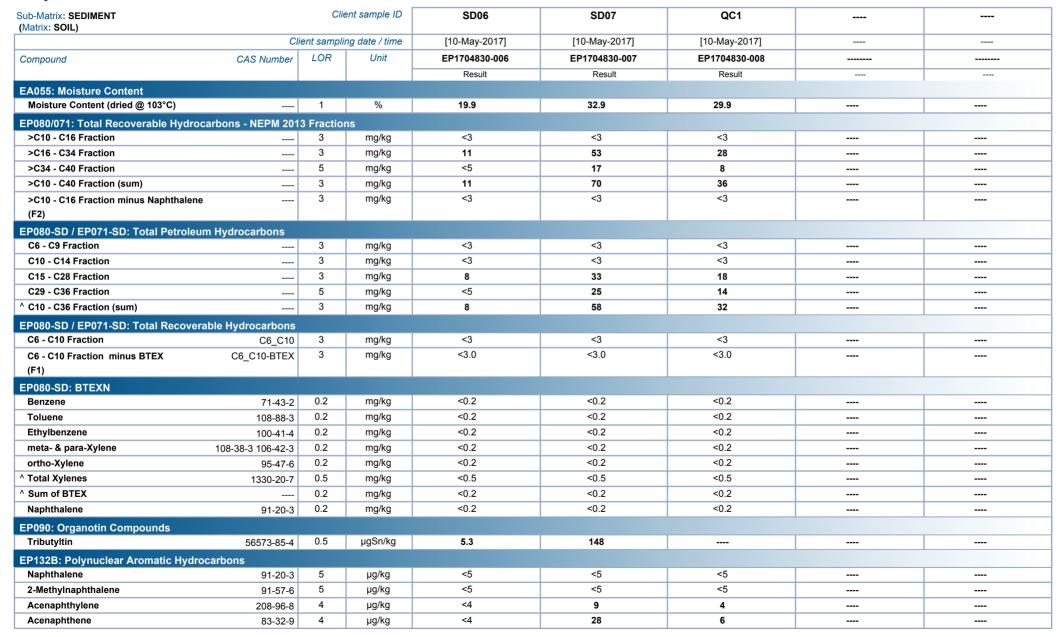


Page : 5 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation



Page : 6 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation



Page : 7 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

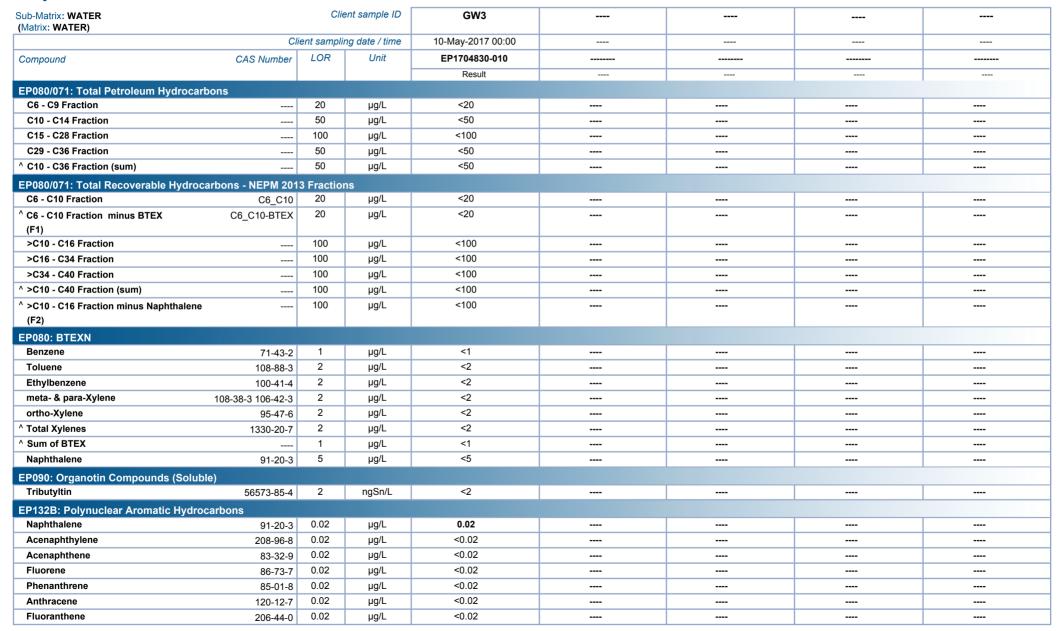


Page : 8 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation



Page : 9 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Page : 10 of 11

Work Order : EP1704830 Amendment 1

Client : 360 ENVIRONMENTAL PTY LTD

Project : 1293 AME Reclamation

Page

: 11 of 11 : EP1704830 Amendment 1 Work Order

Client : 360 ENVIRONMENTAL PTY LTD

1293 AME Reclamation Project

Surrogate Control Limits

Sub-Matrix: SEDIMENT		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	70	130
Toluene-D8	2037-26-5	70	130
4-Bromofluorobenzene	460-00-4	70	130
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP132T: Base/Neutral Extractable Surroga	tes		
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
	1718-51-0	70	130

Sub-Matrix: WATER		Recovery	Limits (%)	
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	61	141	
Toluene-D8	2037-26-5	73	126	
4-Bromofluorobenzene	460-00-4	60	125	
EP090S: Organotin Surrogate				
Tripropyltin		24	116	
EP132T: Base/Neutral Extractable Surrogates				
2-Fluorobiphenyl	321-60-8	38	122	
Anthracene-d10	1719-06-8	64	130	
4-Terphenyl-d14	1718-51-0	47	147	

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EP1704830

Client : 360 ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Perth

Contact : ALYSIA WOODWARD Contact : Luke Jones

Address : 10 Bermondsey St Address : 10 Hod Way Malaga WA Australia 6090

West Leederville 6007

com.au

 Telephone
 : +61 08 93210420
 Telephone
 : 08 9209 7631

 Facsimile
 : +61 08 92260739
 Facsimile
 : +61-8-9209 7600

Project : 1293 AME Reclamation Page : 1 of 4

 Order number
 : 1293
 Quote number
 : EP2017360ENV0007 (EP/565/17)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : VANESSA MAMET

Dates

Date

Mode of Delivery : Carrier Security Seal : Not intact.

No. of coolers/boxes : 2 Temperature : 5.3 - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 11 / 10

General Comments

Delivery Details

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples, samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.
- TBT analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818.
- Metals analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911.
- pH analysis should be conducted within 6 hours of sampling.

: 11-May-2017 Issue Date

Page

: 2 of 4 : EP1704830 Amendment 0 Work Order

Client : 360 ENVIRONMENTAL PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Particle Size Analysis by Hydrometer : EA15	50H	
Composite SD01, SD02, SD03, SD06	- Snap Lock Bag - Subsampled by ALS	- Snap Lock Bag
Soil Particle Density : EA152		
Composite SD01, SD02, SD03, SD06	- Snap Lock Bag - Subsampled by ALS	- Dried soil

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EP1704830-011 : [10-May-2017] : Composite - SD01, SD02, SD03, SD06

		equested Analysis	3D03,	3000					
process necessatasks. Packages as the determinatasks, that are included in the sampling default 00:00 on	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, the date of sampling date wi	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	SOIL - EA055-103 Moisture Content	SOIL - ED008 Def Exchangeable Cations with pre-treatment Default	SOIL - EP004 (Carbon) Organic Matter & Total Organic Carbon (Calc.)	SOIL - EP071 - SD TRH ultra trace in sediments	SOIL - EP080-SD TRH(V)/BTEXN in Sediments	SOIL - EP090 (solids) Organotins	SOIL - EP132B-SD Ultra-trace PAHs in Sediments
EP1704830-001	[10-May-2017]	SD01	1	0, 11	0, 0	✓	✓	✓	✓
EP1704830-002	[10-May-2017]	SD02	1			✓	✓	1	1
EP1704830-003	[10-May-2017]	SD03	✓			✓	✓	✓	1
EP1704830-004	[10-May-2017]	SD04	✓			✓	✓	1	✓
EP1704830-005	[10-May-2017]	SD05	✓			✓	✓	1	✓
EP1704830-006	[10-May-2017]	SD06	✓			✓	✓	1	1
EP1704830-007	[10-May-2017]	SD07	✓	1	1	✓	✓	1	✓
EP1704830-008	[10-May-2017]	QC1	✓			✓	✓		✓
Matrix: SOIL Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - EA001 ph (CaCl)	SOIL - EA150H-C Clay Content by Hydrometer	SOIL - EG005T (solids) Total Metals by ICP-AES				
EP1704830-007	[10-May-2017]	SD07	Ø 6	<u> </u>	<u>v</u> ⊢				
EP1704830-011	10-May-2017 00:00	Composite SD01, SD0		✓					

Issue Date : 11-May-2017

Page

3 of 4 EP1704830 Amendment 0 Work Order

Client : 360 ENVIRONMENTAL PTY LTD

Matrix: WATER <i>Laboratory sample</i>	Client sampling	Client sample ID	(On Hold) WATER No analysis requested	WATER - EP090S Organotins (TBT)	WATER - GW-1 TRH/BTEX/SUT PAH
ID	date / time		<u>ō</u> ≥	y o	≱ K
EP1704830-009	10-May-2017 00:00	QC3	✓		
EP1704830-010	10-May-2017 00:00	GW3		✓	1

Proactive Holding Time Report

 $Sample(s)\ have\ been\ received\ within\ the\ recommended\ holding\ times\ for\ the\ requested\ analysis.$

Issue Date : 11-May-2017

Page

4 of 4 EP1704830 Amendment 0 Work Order

Client : 360 ENVIRONMENTAL PTY LTD

Requested Deliverables

requested Benrerabies		
ACCOUNTS PAYABLE (WA)		
- A4 - AU Tax Invoice (INV)	Email	admin@360environmental.com.au
ALYSIA WOODWARD		9
- *AU Certificate of Analysis - NATA (COA)	Email	alysiawoodward@360environmental
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QC	CI) Email	alysiawoodward@360environmental
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alysiawoodward@360environmental
- A4 - AU Sample Receipt Notification - Environmental HT (SR	RN) Email	alysiawoodward@360environmental
- A4 - AU Tax Invoice (INV)	Email	alysiawoodward@360environmental
- Chain of Custody (CoC) (COC)	Email	.com.au alysiawoodward@360environmental
- EDI Format - ENMRG (ENMRG)	Email	.com.au alysiawoodward@360environmental
- EDI Format - ESDAT (ESDAT)	Email	.com.au alysiawoodward@360environmental
- EDI Format - XTab (XTAB)	Email	.com.au alysiawoodward@360environmental
INVOICING ACCOUNTS		.com.au
- A4 - AU Tax Invoice (INV)	Email	accounts@360environmental.com.a
RESULTS ADDRESS		u
- *AU Certificate of Analysis - NATA (COA)	Email	lah masulta @200 amuina masantal asan
- Ad definicate of Arialysis - NATA (GOA)	Lillali	labresults@360environmental.com.
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QC	CI) Email	au labresults@360environmental.com.
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	au labresults@360environmental.com. au
- A4 - AU Sample Receipt Notification - Environmental HT (SR	RN) Email	labresults@360environmental.com.
- A4 - AU Tax Invoice (INV)	Email	au labresults@360environmental.com. au
- Chain of Custody (CoC) (COC)	Email	labresults@360environmental.com.
- EDI Format - ENMRG (ENMRG)	Email	au labresults@360environmental.com.
- EDI Format - ESDAT (ESDAT)	Email	au labresults@360environmental.com.
- EDI Format - XTab (XTAB)	Email	au labresults@360environmental.com. au

Australian Government National Measurement Institute

QUALITY ASSURANCE REPORT

Client: CHEMCENTRE

NMI QA Report No: CHEM06_170512_2 Sample Matrix: Solid

Analyte	Method	LOR	Blank	San	ple Duplicate	Recoveries		
				Sample	Duplicate	RPD	LCS	Matrix Spike
		ng/g	ng/g	ng/g	ng/g	%	%	%
Organics Section								
Organotin								
Monobutyltin	NR_35	0.5	<0.5	NA	NA	NA	73	NA
Dibutyltin	NR_35	0.5	<0.5	NA	NA	NA	86	NA
Tributyltin	NR_35	0.5	<0.5	NA	NA	NA	80	NA
Organotin Surrogate								
Tripropyltin (%Rec)	NR_35	-	-	NA	NA	NA	101	NA

Results expressed in percentage (%) or ng/g wherever appropriate.

Acceptable Spike recovery is 30-150% (monobutyltin and Tripropyltin); 40-160% (dibutyltin and tributyltin) Maximum acceptable RPDs on spikes and duplicates is 60%.

'NA' = Not Applicable.

RPD= Relative Percentage Difference, LCS = Laboratory Control Spike, LOR = Limit of Reporting.

This report shall not be reproduced except in full.

Signed:

Danny Slee

Organics Manager, NMI-North Ryde

Date: 23/05/2017

Accreditation Number: 10603

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included is this document are traceable to Australian/national standards.

WATER QUALITY DATA

Contact: Alysia Woodward Customer: 360 Environmental

Address: 10 Bermondsey Street, West Leederville 6007

Date of Issue: 14/06/2017 Date Received: 10/05/2017 Our Reference: 360E17-4 Your Reference: 1293

METHOD SAMPLE CODE Reporting Limit	Sampling Date	4700 TOTAL-P μg.P/L <5	2700 TOTAL-N μg.N/L <50	6000 NPTOC mg.C/L <0.5	MS001 Filtered Ni µg/L <0.3	MS001 Filtered Cu μg/L <0.2	MS001 Filtered Zn μg/L <1	MS001 Filtered Pb µg/L <0.1	ICP006 Hg mg/L <0.0001	
File		17052401		17051702	17051801	17051801	17051801	17051801	17051901	
MW03	10/05/2017	14	2900	0.6	<0.3	0.3	<1	<0.1	<0.0001	
QC3	10/05/2017	13	2800	0.7						
QA/QC Data										
Duplicate % Difference		6%	5%	3%	<rl< td=""><td>14%</td><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	14%	<rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
Spike Recovery		103%	86%	-	98%	100%	94%	98%	93%	
Seawater control		101%	98%	97%	111%	109%	95%	99%	101%	
Freshwater control		103%	104%	95%	106%	104%	102%	105%	99%	

Accreditation Number: 10603

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included is this document are traceable to Australian/national standards.

t, Wardoch, WA, 0130

WATER QUALITY DATA

Contact: Alysia Woodward
Customer: 360 Environmental

Address: 10 Bermondsey Street, West Leederville 6007

Date of Issue: 30/05/2017 Date Received: 10/05/2017 Our Reference: 360E17-4 Your Reference: 1293

Page 1 of 1

METHOD SAMPLE CODE Reporting Limit	Sampling Date	4700 TOTAL-P μg.P/L <5	2700 TOTAL-N μg.N/L <50	6000 NPTOC mg.C/L <0.5	MS001 Filtered Ni μg/L <0.3	MS001 Filtered Cu μg/L <0.2	MS001 Filtered Zn μg/L <1	MS001 Filtered Pb μg/L <0.1	ICP006 Hg mg/L <0.0001
File		1705	52401	17051702	17051801	17051801	17051801	17051801	17051901
MW03	10/05/2017	14	2900	0.6	<0.3	0.3	<1	<0.1	<0.0001

Accreditation Number: 10603

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included is this document are traceable to Australian/national standards.

SEDIMENT DATA

Contact: Alysia Woodward
Customer: 360 Environmental

Address: 10 Bermondsey Street, West Leederville 6007

Date of Issue: 13/06/2017 Date Received: 10/05/2017 Our Reference: 360E17-3b Your Reference: 1293

METHOD SAMPLE CODE	Sampling Date	MS002 Total Ext Ni	MS002 Total Ext Cu	MS002 Total Ext Zn	MS002 Total Ext Pb	ICP007 Total Ext Hg	2600 TKN	4500 TOTAL P	6200 TOC	
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg.N/g	mg.P/g	% C	
Reporting Limit		<0.2	<0.2	<0.5	<0.1	<0.01	<0.1	<0.05	<0.2	
File		17051602	17051602	17051602	17051602	17051902	17051602	17051602	17051801	
SD01	10/05/2017	9.9	49	73	17	0.04	1.3	0.50	1.2	
SD03	10/05/2017	1.8	37	36	13	0.03	1.0	0.35	0.9	
SD05	10/05/2017	2.2	21	36	6.9	0.01	0.6	0.32	0.6	
SD07	10/05/2017	1.6	63	52	11	<0.01	0.3	0.36	0.3	
QC1	10/05/2017	1.6	30	32	12	0.02	8.0	0.31	0.7	
QA/QC Data										
Duplicate % Differe	nce	2%	1%	0%	0%	6%	0%	0%	0%	
Spike Recovery		91%	high conc	high conc	high conc	96%	99%	101%	102%	
Blank		<0.2	<0.2	<0.5	<0.1	< 0.01	<0.1	< 0.05	<0.2	
Inhouse Control		100%	96%	95%	104%	96%	103%	102%	104%	
Certified Conrol		104%	99%	99%	108%	99%				

Accreditation Number: 10603

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included is this document are traceable to Australian/national standards.

SEDIMENT DATA

Contact: Alysia Woodward
Customer: 360 Environmental

Address: 10 Bermondsey Street, West Leederville 6007

Date of Issue: 19/05/2017 Date Received: 10/05/2017 Our Reference: 360E17-3 Your Reference: 1293

METHOD SAMPLE CODE Reporting Limit	Sampling Date	MS002 Total Ext Ni mg/kg <0.2	MS002 Total Ext Cu mg/kg <0.2	MS002 Total Ext Zn mg/kg <0.5	MS002 Total Ext Pb mg/kg <0.1	ICP007 Total Ext Hg mg/kg <0.01	2600 TKN mg.N/g <0.1	4500 TOTAL P mg.P/g <0.05	6200 TOC % C <0.2	
File		17051602	17051602	17051602	17051602	17051902	17051602	17051602	17051801	
SD01	10/05/2017	9.9	49	73	17	0.04	1.3	0.50	1.2	
SD03	10/05/2017	1.8	37	36	13	0.03	1.0	0.35	0.9	
SD05	10/05/2017	2.2	21	36	6.9	0.01	0.6	0.32	0.6	
SD07	10/05/2017	1.6	63	52	11	<0.01	0.3	0.36	0.3	
QC1	10/05/2017	1.6	30	32	12	0.02	0.8	0.31	0.7	

CHAIN OF CUSTODY

Email:

Phone: 93602907

To: Marine and Freshwater Research Laboratory

Address: Murdoch University, Loading Zone 1,

Phys Sc Room 3.026, 90 South St, Murdoch 6150

Phone: 08 93602907

Phone: 9388 8360

Fax:

Email: alysiawoodward@360environmental.com.au

Courier Details: Job Number: 1293 PO/ Account #: Sample Preservation: None / Warm / Cool / On Ice / Frozen / Acidified / Filtered / Other: Sample Type: Water / Bore / Fresh / Estuarine / Marine / Brine / Plant / Sediment / Soil / Other: Sampling Sample Code **Analytical Suite** Date TKN, HOLD TN, TP, Copper, mercury, TOC, TP lead, nickel, zinc TOC No SD01 10/05/2017 X X 1 2 SD02 10/05/2017 X 3 SD03 10/05/2017 X X 4 SD04 10/05/2017 X 10/05/2017 Х 5 SD05 X 6 SD06 10/05/2017 X 10/05/2017 7 SD07 X X X QC1 10/05/2017 8 × 9 MW03 10/05/2017 X X QC3 10/05/2017 10 hold hold 11 6501 10/05/2017 X X 12 QC05 10/05/2017 13 14 15 16 17 18 19 20 Relinquished by: Date: Time: Received by: Date: Time Job 10.5.17 Number: Varossa .30 pm 10/5/17 Sample Condition:

Please acknowledge receipt of samples by signing where appropriate, quoting job number and returning to the sender by fax. MAFRL LAB 1:NATA:Proformas:Lab Proformas: Chain of Custody (C2a)

10/6/15