ARBORICULTRAL ASSESSMENT

CLASSIC TREE SERVICES

MOB - 0403587772 EMAIL – jack@classicts.com.au POSTAL - PO BOX 521 Balcatta W.A. 6914

BALCATTA REFUSE CENTRE / BALCATTA

City of Stirling
25 Cedric Street
STIRLING
6021, WA
Att: Barry Elswood
Senior Project Officer
Facilities, Projects & Assets

28/03/2019

Re: Pre-development assessment of trees within the Balcatta Refuse Centre

Barry,

Please find attached the report regarding your request to provide a population survey on the multiple trees located within the Balcatta Refuse Centre. If you would like any further information regarding matters contained in the report please call me anytime during normal business hours.

JACK PAYNE NAT DIP ARBORICULTURE – MERRIST WOOD U.K.

TOM SMITH
GRAD CERT ARBORICULTURE – UNIVERSITY OF MELBOURNE

STEVE KNEEBONE BSc (Hons) ARBORICULTURE – UNIVERSITY OF LANCASHIRE U.K. QTRA licensed user No. 804

CONSULTANTS
CLASSIC TREE SERVICES

<u>INDEX</u>

1 - SUMMARY	3
2 – INTRODUCTION	.3
3 – TREE DETAILS	.5-13
4 – DISCUSSION	1/ 1/
T - DISCUSSION	,,17-10
5 - RECOMMENDATIONS	_17
6 – APPENDIX 1 – TREE IMAGES	18-50

<u>1 - SUMMARY</u> — The development of the Balcatta Refuse Centre has necessitated an inspection and survey of all trees within the boundaries, to assess the retention potential of specimens and the possibility of plan amendments. The report considered several factors in relation to each tree or group of trees and provides a retention value and transplant potential for the trees in the overall site.

2 - INTRODUCTION

2.1 Barry Elswood from The City of Stirling has requested a survey of the tree population inside the boundaries of the current Balcatta refuse centre, owned and operated by the City. The initial development plan (see Image below) suggested an almost blank canvas in which most trees had been removed.

lmage 1 – design proposal diagram

- 2.2 The scope of the report was to provide information based on the following proposal;
 - height range in 5 metre increments
 - diameter at breast height so the Tree Protection Zone can be calculated (unless many small trees in a group when we can average and set a perimeter limit)
 - diameter at ground level so the Structural Root Zone can be calculated (unless many small trees in a group when this is only necessary for larger perimeter trees)
 - a GPS location for each tree or group
 - vitality
 - structural condition, including faults or defects
 - diseases or pests
 - whether it is a weed species or likely to take over the site if left unmanaged
 - a current life expectancy if left as is
 - a digital image of each tree

Concluding information which will have considered in part the design proposal plans you provided, will include;

- a Tree retention value from Low to Very High
- whether the tree can be and is worth transplanting with reference to approximate costs
- a TPZ zone and SRZ zone about each tree to consider in the development process
- 2.3 For ease of reference the site was separated into ten easily definable zones inside of which the tree population was assessed.
- 2.4 During the pre-inspection walkover and survey it was noted that several trees may be worthy of consideration for transplanting. Due to ease of excavation, limited preparation time required, and good re-establishment rates the species noted commonly have a higher success rate. Larger potential transplants do take significant preparation time (up to twelve months) and incur large lifting machinery expenses. This should be considered as one tree can absorb large amounts of allocated budgets. Specific specimens were noted to be significant trees with native, cultural and habitat value while some presented as weed species and/or non-natives which may have opportunistically established in the site.
- 2.5 The site now and post development completion must retain a sump area where water is collected. The current sump which was dry at the time of the walkover and survey is surrounded predominantly with what would be listed as weed and some Australian but not necessarily Western Australian native species.
- 2.6 Two significant stands of native trees were noted in the north east and south west corners where some large and significant native trees exist. These include Tuart, Jarrah and smaller species such as Banksias. It was suggested that efforts to amend the site to retain these areas would be well worth while if soil samples indicated the area were free of harmful pathogens such as *Phytophthora spp.*
- 2.7 It was noted that alternative build options with regard to building over tree roots (e.g. ARBORGRID)) could be considered and allow parking areas right amongst tree populations without affecting tree health and vitality. Additionally, "No Dig" roads and pathways were discussed where tree roots are not affected, as well as the installation of permeable and porous material over geotextile and aggregate in the tree TPZ areas.
- 2.8 Due to the intense grouping and close proximity in some areas, some trees were listed in groups. These appear in Table 1 as T59, T77 and T187. The group findings are general observations for the trees within that group and management considerations may see individual trees with the group retained or removed depending on the current vitality at the time of future works.
- 2.9 The 'Retention Value' of the trees was based on the following criteria and did not consider where the trees sit within the current design plan for the site. The trees were listed for retention as Low, Medium, High or Very High based on a combination of several values:
 - Tree vitality
 - Structural condition
 - Age/size
 - Life expectancy
 - Species profile native vs introduced/weed species
 - Other factors aesthetics, remnant, habit etc

The higher the tree scores in all fields the higher the retention value.

3 SITE MAPS, DETAILS AND TABLES

- **3.1** The site map on Page 6 provides an overhead image with the area separated into zones for ease of reference.
- 3.2 The site Tree map shows a screen shot of the GPS highlighted trees from "Tree Plotter".

The "Tree Plotter" access details are below;

Username - Stirling Password - BalcattaRefuse

Email - <u>Barry.Elswood@stirling.wa.gov.au</u>
Url - <u>https://au.pg-cloud.com/ClassicTS/</u>

3.3 The tree details tables are on pages 8 to 13. It is considered that the report is best reviewed with the tables available to be referred to as the Tree plotter maps are viewed online. This will permit ease of cross reference between the many areas that need to be considered with regard to the trees and the site development.

IMG 3 – Showing the location of the 10 zone areas. Image courtesy of Google.

IMG 4 – Showing GPS locations of all trees surveyed. Information available in digital form via Tree Plotter (details supplied).

3.3 Tree details

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION VALUE	TRANS PLANT ?
T 1	Callistemon viminalis	Z1	0-5	180	560	2.16	2.59	Mod	G – stem removal	Frass	N	10-20	М	Υ
T 2	Callistemon viminalis	Z1	0-5	120	460	2	1.5	Mod	G – Multi stem	N	N	10-20	М	Υ
T 3	Callistemon viminalis	Z1	0-5	100	310	2	2	Mod	G – Multi stem	N	N	10-20	М	Υ
T 4	Eucalyptus grandis	Z1	25-30	580	670	6.96	2.8	High	M – Fractures	N	N	40-100	М	N
T 5	Eucalyptus robusta	Z1	10-15	430	520	5.16	2.51	Mod	M – Suppressed	N	N	10-20	М	N
T 6	Ficus microcarpa var Hillii	Z1	5-10	290/370	460	5.64	2.39	High	G	N	N	40-100	М	Υ
T 7	Eucalyptus sideroxylon	Z1	5-10	240	280	2.88	1.94	Mod	M – Suppressed	N	N	0-10	L	N
T 8	Eucalyptus sideroxylon	Z1	10-15	540	560	6.48	2.59	High	G – Minor DW	N	N	40-100	Н	N
T 9	Eucalyptus sideroxylon	Z1	10-15	260	270	3.12	1.91	High	G	N	N	40-100	М	N
T 10	Eucalyptus sideroxylon	Z1	5-10	290	380	3.48	2.2	Low	M – Dieback	N	N	0-10	L	N
T 11	Eucalyptus sideroxylon	Z1	0-5	240	240	2.88	1.82	High	M- Leaning	N	N	10-20	М	N
T 12	Eucalyptus camaldulensis	Z1	20-25	630	870	7.56	3.12	High	G	N	N	40-100	Н	N
T 13	Casuarina obesa	Z1	5-10	270	530	3.24	2.53	High	G	N	N	20-40	М	N
T 14	Eucalyptus rudis	Z1	5-10	190	230	2.28	1.79	High	G	N	N	20-40	М	N
T 15	Eucalyptus rudis	Z1	0-5	200	250	2.4	1.85	High	G	N	N	20-40	М	N
T 16	Eucalyptus camaldulensis	Z1	15-20	400	460	4.8	2.39	High	G	N	N	40-100	Н	N
T 17	Eucalyptus camaldulensis	Z1	0-5	35	45	2	1.5	High	G	N	N	10-20	L	Υ
T 18	Acacia saligna	Z1	0-5	900	150	10.8	1.5	High	М	N	Υ	10-20	L	N
T 19	Eucalyptus sideroxylon	Z1	10-15	380	410	4.56	2.28	High	G -Minor suppress	N	N	40-100	Н	N
T 20	Eucalyptus conferruminata	Z1	0-5	900	140	10.8	1.5	Mod	P –Suppressed	N	N	0-10	L	N
T 21	Eucalyptus sideroxylon	Z1	5-10	170	230	2.04	1.79	Mod	M – Lean	N	N	10-20	М	N
T 22	Agonis flexuosa	Z1	5-10	260/290	590	4.68	2.65	High	G	N	N	40-100	Н	N
T 23	Eucalyptus conferruminata	Z1	0-5	90/90	100/100	2	1.5	Mod	P – Lean twin/stem	N	N	0-10	L	N
T 24	Euc. camaldulensis obtusa	Z1	15-20	590/610	830	10.2	3.06	High	M	N	N	40-100	Н	N
T 25	Agonis flexuosa	Z1	0-5	270	340	3.24	2.1	High	G	N	N	20-40	М	N
T 26	Euc. camaldulensis obtusa	Z1	15-20	540	640	6.48	2.74	High	G - Failures	N	N	40-100	Н	N
T 27	Euc. camaldulensis obtusa	Z1	5-10	120	200	2	1.68	High	G –Twin stem	N	N	10-20	L	N
T 28	Euc. camaldulensis obtusa	Z1	15-20	200	230	2.4	1.79	High	M – 9 Stem clump	N	N	40-100	М	N
T 29	Euc. camaldulensis obtusa	Z1	10-15	160/160	220/220	2.76	2.02	High	M- 4 Stem clump	N	N	40-100	М	N
T 30	Euc. camaldulensis obtusa	Z1	10-15	190	230	2.28	1.79	High	M- 6 Stem clump	N	N	40-100	M	N

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL ITY	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION	TRANS PLANT
140.			(111)	(111111)	(11111)	(111)	(111)	""	CONDITION		JFF.	LAFLET.	VALUE	?
T 31	Euc. camaldulensis obtusa	Z1	10-15	240	280	2.88	1.94	High	M – 5 Stem clump	N	N	40-100	М	N
T 32	Euc. camaldulensis obtusa	Z1	15-20	690	830	8.28	3.06	High	M – Failures, lean	N	N	40-100	Н	N
T 33	Euc. camaldulensis obtusa	Z1	15-20	540	660	6.48	2.78	Mod	M – Failures	N	N	20-40	Н	N
T 34	Euc. camaldulensis obtusa	Z1	15-20	780	910	9.36	3.18	High	G – Small failures	N	N	40-100	Н	N
T 35	Euc. camaldulensis obtusa	Z1	0-5	80	130	2	1.5	High	M	N	N	10-20	L	N
T 36	Eucalyptus grandis	Z2	10-15	310	390	3.72	2.23	High	G – In island	N	N	40-100	М	N
T 37	Eucalyptus gomphocephala	Z2	25-30	63/73/70/79	80/82/65/85	15	4	High	G – 4 Stem	Canker	N	40-100	VH	N
T 38	Eucalyptus gomphocephala	Z3	10-15	410/510	650	7.8	2.76	High	G	N	N	40-100	Н	N
T 39	Eucalyptus rudis	Z3	5-10	340	400	4.08	2.25	High	G	N	N	20-40	М	N
T 40	Eucalyptus marginata	Z3	10-15	450/390	540	7.2	2.55	Low	M - Dieback	N	N	0-10	М	N
T 41	Eucalyptus gomphocephala	Z3	25-30	1240	1240	14.88	3.62	High	G	Bracket	N	40-100	Н	N
T 42	Euc. camaldulensis obtusa	Z3	0-5	150	180	2	1.61	High	G – Suppressed	N	N	20-40	L	N
T 43	Eucalyptus leucoxylon	Z3	0-5	180	200	2.16	1.68	High	G – Suppressed	N	N	20-40	L	N
T 44	Euc. camaldulensis obtusa	Z3	10-15	580	690	6.96	2.83	High	G	N	N	40-100	L	N
T 45	Eucalyptus conferruminata	Z3	0-5	270	350	3.24	2.13	High	M - Suppressed	N	N	20-40	L	N
T 46	Ficus microcarpa var. hillii	Z3	5-10	410	450	4.92	2.37	High	G	N	N	40-100	L	N
T 47	Casuarina cunninghamiana	Z3	0-5	150/130	260	2.4	1.88	Mod	P - Suppressed	N	N	0-10	L	N
T 48	Casuarina cunninghamiana	Z3	10-15	350	450	4.2	2.37	High	G	N	N	20-40	L	N
T 49	Eucalyptus melliodora	Z3	10-15	370	260	4.44	1.88	High	G	N	N	20-40	М	N
T 50	Eucalyptus melliodora	Z3	10-15	380	450	4.56	2.37	High	P – In bank edge	N	N	20-40	L	N
T 51	Melia azedarach	Z3	5-10	150	450	2	2.37	Mod	P – In bank edge	N	Υ	0-10	L	N
T 52	Ricinus communis	Z3	0-5	100	500	2	2.47	Low	P – In bank edge	N	Υ	0-10	L	N
T 53	Melia azedarach	Z3	5-10	250	300	3	2	High	G	N	Υ	0-10	L	N
T 54	Euc. camaldulensis obtusa	Z3	10-15	480	180	5.76	1.61	High	M – soil level	N	N	20-40	L	N
T 55	Euc. camaldulensis obtusa	Z3	5-10	220	380	2.64	2.2	High	M – soil level	N	N	20-40	М	N
T 56	Euc. camaldulensis obtusa	Z3	15-20	490	640	5.88	2.74	High	M – soil level	N	N	20-40	L	N
T 57	Euc. camaldulensis obtusa	Z3	10-15	460	260	5.52	1.88	High	M – soil level	N	N	20-40	М	N
T 58	Euc. camaldulensis obtusa	Z3	10-15	510	550	6.12	2.57	High	M – Suppressed	N	N	20-40	М	N
T 59	Melia azedarach Group	Z3	5-10	Various	Various	5m +	2.5+	High	M – many in bank	N	Υ	20-40	М	N
T 60	Eucalyptus gomphocephala	Z3	20-25	510/590/530	670/560/670	11.28	3.44	High	G – 3 stems	N	N	40-100	VH	N
T 61	Eucalyptus gomphocephala	Z3	10-15	650	700	7.8	2.76	High	G – mod suppressed	N	N	40-100	Н	N
T 62	Eucalyptus leucoxylon	Z4	0-5	270	320	3.24	1.91	High	G	N	N	20-40	М	N
T 63	Eucalyptus marginata	Z4	10-15	750	860	9	3.11	High	M - Basal wound	N	N	20-40	Н	N

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION VALUE	TRANS PLANT ?
T 64	Ficus benjamina	Z4	0-5	110	190	2	1.65	High	G	N	N	20-40	L	Υ
T 65	Araucaria columnaris	Z4	0-5	130	170	2	1.57	High	P – Suppressed	N	N	0-10	L	Υ
T 66	Ficus benjamina	Z4	10-15	290/290/220	400	5.64	2.25	High	M – Side pruned	N	N	10-20	L	Υ
T 67	Ficus benjamina	Z4	10-15	310	380	3.72	2.2	High	M – Side pruned	N	N	10-20	L	Υ
T 68	Araucaria heterophylla	Z4	10-15	300	320	3.6	2.05	High	G	N	N	20-40	L	Υ
T 69	Ficus benjamina	Z4	0-5	200	N/A	2.4	1.5	High	P – In pipe	N	N	10-20	L	N
T 70	Shinus terebinthifolius	Z4	0-5	N/A	N/A	2	1.5	Mod	P - Cluster	N	Υ	0-10	L	N
T 71	Eucalyptus marginata	Z5	5-10	220/220	260/270	3.72	2.18	Low	M- 2 stem	N	N	0-10	L	N
T 72	Eucalyptus marginata	Z5	0-5	510	370	6.12	2.18	High	G	N	N	20-40	М	N
T 73	Eucalyptus marginata	Z5	10-15	570	710	6.84	2.87	High	G	N	N	20-40	Н	N
T 74	Eucalyptus marginata	Z5	10-15	730	780	8.76	2.98	Low	P –Damage	N	N	0-10	L	N
T 75	Eucalyptus marginata	Z5	10-15	540	600	6.48	2.67	High	M –Lean	N	N	40-100	Н	N
T 76	Eucalyptus marginata	Z5	10-15	360	440	4.32	2.34	Mod	M – Stem wound	N	N	20-40	Н	N
T 77	Banksia, Jarrah Group	Z5	0-10	Various	Various	4+	2+	High	G	N	N	20-40	Н	N
T 78	Eucalyptus marginata	Z5	5-10	270	280	3.24	1.94	High	M –Wounds, 3 stem	N	N	40-100	Н	N
T 79	Eucalyptus marginata	Z5	5-10	300	300	3.6	2	High	G – 3 in a group	N	N	40-100	Н	N
T 80	Eucalyptus marginata	Z5	10-15	770	840	9.24	3.08	High	G	N	N	40-100	Н	N
T 81	Eucalyptus marginata	Z5	5-10	480	540	5.76	2.55	Poor	M	N	N	0-10	М	N
T 82	Eucalyptus marginata	Z5	5-10	320	380	3.84	2.2	High	M - Wounds	N	N	20-40	Н	N
T 83	Eucalyptus marginata	Z5	5-10	300/310/200	360/330/250	5.76	2.57	High	G – Wounds, 3 stem	N	N	40-100	Н	N
T 84	Corymbia calophylla	Z5	0-5	100/100	250	2	1.85	Low	Р	N	N	0-10	М	N
T 85	Corymbia calophylla	Z5	5-10	330	370	3.96	2.18	High	G	N	N	20-40	М	N
T 86	Melaleuca quinquenervia	Z6	5-10	280	760	3.36	2.95	High	G – Multi Stem	N	N	20-40	Н	N
T 87	Washingtonia robusta	Z6	5-10	440	440	5.28	2.34	High	G	N	N	20-40	М	Υ
T 88	Ficus microcarpa var. Hillii	Z6	10-15	480/570	670	9	2.8	Mod	G – 2 Stem	N	N	40-100	М	Υ
T 89	Ficus microcarpa var. Hillii	Z6	10-15	550	550	6.6	2.57	Mod	G	N	N	40-100	М	Υ
T 90	Ficus microcarpa var. Hillii	Z6	10-15	640	660	7.68	2.78	Mod	G – Single stem	N	N	40-100	М	Υ
T 91	Eucalyptus rudis	Z6	5-10	290	320	3.48	2.05	High	P –Suppressed	N	N	10-20	L	N
T 92	Callistemon viminalis	Z6	0-5	140	210	2	1.72	High	P – Suppressed	N	N	10-20	L	N
T 93	Ficus microcarpa var. Hillii	Z6	10-15	470	520	5.64	2.51	High	G	N	N	20-40	М	N
T 94	Eucalyptus spathulata	Z6	0-5	260	300	3.12	2	Mod	M- Suppressed	N	N	10-20	L	N
T 95	Ficus microcarpa var. Hillii	Z6	15-20	780	780	9.36	2.98	High	G	N	N	40-100	Н	N
T 96	Eucalyptus marginata	Z6	10-15	910	1080	10.92	3.42	Mod	M – Basal damage	N	N	40-100	Н	N

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION VALUE	TRANS PLANT ?
T 97	Eucalyptus marginata	Z6	5-10	300/320/280	350/360/410	6.24	2.76	High	G – 3 Stem	N	N	40-100	Н	N
T 98	Eucalyptus spathulata	Z6	0-5	370	510	4.44	2.49	High	M –Wound, Stake	N	N	20-40	М	N
T 99	Melia azedarach	Z6	0-5	90	100	2	1.5	High	G	N	Υ	20-40	L	N
T 100	Eucalyptus spathulata	Z6	5-10	230	370	2.76	2.18	Low	M – Wounds	N	N	0-10	L	N
T 101	Melia azedarach	Z6	10-15	290/410	400/480	6	2.71	High	G – two stem	N	Υ	20-40	М	N
T 102	Araucaria columnaris	Z6	5-10	200	230	2.4	1.79	High	P – Suppressed	N	N	10-20	L	N
T 103	Ficus obliqua	Z6	10-15	320	290	3.84	1.97	High	G	N	N	20-40	М	N
T 104	Eucalyptus spathulata	Z6	5-10	350	350	4.2	2.13	High	M – Wound	Bracket	N	10-20	L	N
T 105	Callistemon viminalis	Z6	0-5	90	150	2	1.5	Poor	M	N	N	0-10	L	N
T 106	Callistemon viminalis	Z6	0-5	110	190	2	1.65	Mod	М	N	N	0-10	L	N
T 107	Callistemon viminalis	Z6	0-5	120	290	2	1.97	Mod	M	N	N	0-10	L	N
T 108	Eucalyptus spathulata	Z6	5-10	410	450	4.92	2.37	High	M - Lean	N	N	20-40	М	N
T 109	Dypsis decaryi	Z7	0-5	370	370	4.44	2.18	High	G – Roundabout	N	N	20-40	L	Υ
T 110	Dypsis decaryi	Z7	0-5	340	340	4.08	2.1	High	G – Roundabout	N	N	20-40	L	Υ
T 111	Araucaria columnaris	Z7	5-10	220	270	2.64	1.91	High	G	N	N	20-40	L	Υ
T 112	Washingtonia robusta	Z7	5-10	440	440	5.28	2.34	High	G	N	N	20-40	М	Υ
T 113	Corymbia calophylla	Z7	5-10	290/370	470	5.64	2.41	High	G - Wound, Stake	N	N	20-40	М	N
T 114	Corymbia calophylla	Z7	10-15	620	780	7.44	2.98	High	G	Canker	N	20-40	М	N
T 115	Callistemon viminalis	Z7	0-5	150/130	450	2.4	2.37	High	G	N	N	20-40	М	N
T 116	Eucalyptus leucoxylon	Z7	0-5	180	230	2	1.79	High	G	N	N	20-40	М	N
T 117	Eucalyptus leucoxylon	Z7	5-10	400/240	530	5.64	2.53	High	G – Twin Stem	N	N	20-40	М	N
T 118	Corymbia calophylla	Z7	10-15	290/270/420	570	6.96	2.61	High	G – 3 Stem	Canker	N	20-40	М	N
T 119	Eucalyptus erythrocorys	Z7	0-5	170	240	2.04	1.82	High	M – Bend	N	N	10-20	L	N
T 120	Eucalyptus erythrocorys	Z7	0-5	220	290	2.64	1.97	Mod	M – Canopy decline	N	N	10-20	L	N
T 121	Callistemon viminalis	Z7	0-5	190	280	2.28	1.94	High	G	N	N	10-20	L	N
T 122	Callistemon viminalis	Z7	0-5	360/200	360/290	4.92	2.39	High	G	N	N	10-20	L	N
T 123	Callistemon viminalis	Z7	0-5	N/A	440	4.8	2.34	High	G	N	N	10-20	L	N
T 124	Araucaria columnaris	Z7	5-10	280	360	3.36	2.15	High	G	N	N	20-40	М	Υ
T 125	Washingtonia robusta	Z7	0-5	N/A	N/A	1.5	1	High	G	N	N	20-40	М	Υ
T 126	Phoenix canariensis	Z7	0-5	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ
T 127	Phoenix canariensis	Z7	0-5	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ
T 128	Phoenix canariensis	Z7	5-10	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ
T 129	Phoenix canariensis	Z7	5-10	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION VALUE	TRANS PLANT ?
T 130	Phoenix canariensis	Z7	5-10	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ
T 131	Butia capitata	Z7	0-5	N/A	N/A	1.5	1	High	G	N	N	20-40	М	Υ
T 132	Phoenix canariensis	Z7	0-5	N/A	N/A	2	1.5	High	G	N	N	20-40	М	Υ
T 133	Corymbia maculata	Z8	5-10	180	250	2.16	1.85	High	G – Root exposure	N	N	10-20	L	N
T 134	Araucaria heterophylla	Z8	0-5	60	80	1.5	1	High	G – Suppressed	N	N	10-20	L	Υ
T 135	Araucaria heterophylla	Z8	0-5	70	80	1.5	1	High	G – Suppressed	N	N	10-20	L	Υ
T 136	Washingtonia filifera	Z8	0-5	N/A	N/A	1.5	1	High	G – Suppressed	N	N	10-20	L	Υ
T 137	Eucalyptus marginata	Z8	10-15	480/500/380	580/610/470	9.48	3.25	High	M – Basal Wounds	N	N	20-40	Н	N
T 138	Ficus benjamina	Z8	5-10	N/A	260	3	1.88	High	G	N	N	40-100	М	Υ
T 139	Callistemon viminalis	Z8	5-10	260/250	420	4.32	2.3	High	G	N	N	20-40	М	N
T 140	Eucalyptus utilis	Z8	0-5	340	370	4.08	2.18	High	M	N	N	10-20	М	N
T 141	Callistemon viminalis	Z8	0-5	170	360	2.04	2.15	High	M – Stem damage	N	N	10-20	М	N
T 142	Eucalyptus utilis	Z9	5-10	310	430	3.72	2.32	High	M – Basal hollow	N	N	20-40	М	N
T 143	Callistemon viminalis	Z9	0-5	110/110	230	2	1.79	High	P – Stem fracture	N	N	10-20	М	N
T 144	Callistemon viminalis	Z9	5-10	180/70	450	2	2.37	Mod	M	N	N	10-20	М	N
T 145	Callistemon viminalis	Z9	0-5	150/100	280	2.16	1.94	High	M – Lean	N	N	10-20	М	N
T 146	Eucalyptus marginata	Z9	5-10	190	240	2.28	1.82	High	G	N	N	40-100	Н	N
T 147	Eucalyptus marginata	Z9	10-15	270	310	3.24	2.02	High	G – 7 Stem	N	N	40-100	Н	N
T 148	Eucalyptus marginata	Z9	0-5	120	150	2	1.5	High	M – Suppressed	N	N	20-40	М	N
T 149	Banksia menziesii	Z9	5-10	170/170	260	2.88	1.88	Mod	M – Twin Stem	N	N	10-20	М	N
T 150	Eucalyptus marginata	Z9	10-15	700	700	8.4	2.85	High	G	N	N	40-100	Н	N
T 151	Banksia menziesii	Z9	0-5	210	330	2.19	2.08	Mod	G	N	N	0-10	L	N
T 152	Banksia menziesii	Z9	0-5	190	220	2.28	1.75	Mod	М	N	N	0-10	L	N
T 153	Eucalyptus marginata	Z9	10-15	670/320	840/410	8.88	3.21	High	M – Lightning hit	N	N	40-100	Н	N
T 154	Eucalyptus marginata	Z9	5-10	270	330	3.24	2.08	Mod	G	N	N	40-100	Н	N
T 155	Banksia menziesii	Z9	5-10	330	370	3.96	2.18	High	G	N	N	10-20	М	N
T 156	Banksia menziesii	Z9	0-5	260	280	3.12	1.94	High	G	N	N	0-10	М	N
T 157	Eucalyptus marginata	Z9	0-5	160	190	2	1.65	High	M – 4 Stem	N	N	40-100	Н	N
T 158	Banksia menziesii	Z9	0-5	140/140	250	2	1.85	High	G	N	N	0-10	М	N
T 159	Eucalyptus marginata	Z9	10-15	570	690	6.84	2.83	High	M – Dead Stem	N	N	40-100	Н	N
T 160	Eucalyptus marginata	Z9	5-10	220/260	380	4.08	2.2	High	G – 2 Stem	N	N	40-100	Н	N
T 161	Eucalyptus marginata	Z9	5-10	200/230/170	260/280/180	4.2	2.3	High	G – 3 Stem	N	N	40-100	Н	N
T 162	Eucalyptus marginata	Z9	5-10	260	260	3.12	1.88	High	G	N	N	40-100	Н	N

TREE No.	SPECIES	ZONE	HEIGHT (m)	DBH (mm)	DGL (mm)	TPZ (m)	SRZ (m)	VITAL	STRUCTURAL CONDITION	P/D	WEED SPP.	LIFE EXPECT.	RETEN TION VALUE	TRANS PLANT ?
T 163	Eucalyptus marginata	Z9	5-10	360	430	4.32	2.32	High	G	N	N	40-100	Н	N
T 164	Eucalyptus marginata	Z9	10-15	360	440	4.32	2.34	High	G	N	N	40-100	Н	N
T 165	Phoenix canariensis	Z9	0-5	N/A	N/A	2	1.5	High	G	N	N	40-100	L	N
T 166	Phoenix canariensis	Z9	0-5	N/A	N/A	2	1.5	High	G	N	N	40-100	L	N
T 167	Phoenix canariensis	Z9	5-10	N/A	N/A	2	1.5	High	G	N	N	40-100	L	N
T 168	Eucalyptus marginata	Z9	10-15	390	420	4.48	2.3	High	M – Lean	N	N	40-100	Н	N
T 169	Eucalyptus marginata	Z9	10-15	370	430	4.44	2.32	High	G	N	N	40-100	Н	N
T 170	Eucalyptus marginata	Z9	10-15	260/180	340	3.84	2.1	High	G	N	N	40-100	Н	N
T 171	Eucalyptus marginata	Z9	10-15	300/360/260	350/510	6.48	2.71	High	G – Twin Stem	N	N	40-100	Н	N
T 172	Eucalyptus marginata	Z9	10-15	410/260	540	5.88	2.55	High	G – Twin Stem	N	N	40-100	Н	N
T 173	Corymbia calophylla	Z9	5-10	310	370	3.72	2.18	High	G	N	N	40-100	Н	N
T 174	Corymbia calophylla	Z9	10-15	480	580	5.76	2.63	High	G	N	N	40-100	Н	N
T 175	Eucalyptus marginata	Z9	10-15	550	620	6.6	2.71	High	G	N	N	40-100	Н	N
T 176	Eucalyptus marginata	Z9	10-15	290/310	350/360	6	2.47	High	G – Twin Stem	N	N	40-100	Н	N
T 177	Eucalyptus marginata	Z9	5-10	240/290	430	4.56	2.32	High	G – Twin Stem	N	N	40-100	Н	N
T 178	Eucalyptus marginata	Z9	10-15	500	540	6	2.55	High	M – stem wound	N	N	40-100	Н	N
T 179	Eucalyptus marginata	Z9	0-5	260	320	3.12	2.05	High	G	N	N	40-100	Н	N
T 180	Eucalyptus marginata	Z9	10-15	360	430	4.32	2.32	High	G	N	N	40-100	Н	N
T 181	Eucalyptus marginata	Z9	10-15	330	390	3.96	2.23	High	G	N	N	40-100	Н	N
T 182	Eucalyptus marginata	Z9	15-20	650/970/610	1680	15	4.12	High	M – basal decay	Bees	N	40-100	VH	N
T 183	Eucalyptus marginata	Z9	5-10	260/240	290/250	4.2	2.2	High	G	N	N	40-100	Н	N
T 184	Eucalyptus marginata	Z9	5-10	280/170/170	300/180/190	4.44	2.25	High	G	N	N	40-100	Н	N
T 185	Eucalyptus marginata	Z9	5-10	300	300	3.6	2	High	M – Stem wound	N	N	40-100	Н	N
T 186	Banksia	Z9	0-5	100	170	2	1.57	High	G	N	N	10-20	Н	N
T 187	Jarrah, Marri, Banksia Group	Z9	Various	Various	Various	4+	3+	High	G	N	N	Various	VH	N
T 188	Eucalyptus gomphocephala	Z10	15-20	430	530	5.16	2.53	High	M- stem wound	N	N	40-100	VH	N
T 189	Eucalyptus gomphocephala	Z10	0-5	240	330	2.88	2.08	High	M – Suppressed	N	N	40-100	М	N
T 190	Eucalyptus gomphocephala	Z10	20-25	550/770/950	560	15	2.59	High	M- basal wound	Ants	N	40-100	VH	N
T 191	Eucalyptus gomphocephala	Z10	20-25	540/430	620/530	8.28	3.04	High	G	N	N	40-100	VH	N
T 192	Eucalyptus rudis	Z10	5-10	260	310	3.12	2.02	High	G	N	N	40-100	М	Υ
T 193	Eucalyptus conferruminata	Z10	5-10	320	330	3.84	2.08	High	M – Root damage	N	N	20-40	М	N
T 194	Eucalyptus conferruminata	Z10	5-10	440	330	5.28	2.08	High	M – Root damage	N	N	20-40	М	N
T 195	Corymbia maculata	Z10	5-10	130	160	2	1.53	High	G	N	N	20-40	L	Υ

4 – DISCUSSION

- 4.1 The fully cleared site option is always a far simpler way to undertake a development as opposed to working around trees. It does however miss the opportunity to retain many significant, possible remnant and important native and habitat trees. Zone 9 (north-east) and Zone 5 (south-west) retain stands of native trees which would be ideal to retain. Zone 5 contains some individual trees that are rated low which could be removed to open up the areas if need be. Zones 1, 2, 3 and 10 retain some very large individual native and non-native trees of high amenity and ecological value that would surely be missed if they were not retained, most notably the mature Tuarts. Zone 1 also retains the eastern fence line of trees which appear as partially retained in some of the proposed development images. With selective removal and remedial pruning this could present as a significant retained stand of trees.
- 4.2 Zone 4 retains very little in the way of significance and becomes an immediate area for complete clearance potential. While Zone 3 retains some species listed as high retention value (T 60, T 61), transplant options and removal of many of what are self-sewn spreading species seems the better option especially when a new sump area needs to be considered.
- 4.3 Zone 7 retains a large amounts of palms which are easily transplanted elsewhere onsite or to reserve or selected areas within the City. They do also retain relatively low amenity and habitat value and as such removal and disposal would not be seen as a significant loss. Onsite transplant costs if considered feasible would be far less that moving the trees elsewhere as they can be lifted and moved with Hiabs, Franna cranes and/or crawler cranes.
- 4.4 Zone 6 retains some significant specimens of *Ficus hillii* or Hills Fig. The main group of trees (T89, 90, 91, 93) adjacent to the current wash down facility present with average vitality and may be showing the effects of long-term root zone damage and waste material pollution. The larger single specimen (Tree 95) is however one of the more impressive albeit non-native trees on the site and is adjacent to a further mature Jarrah (Tree 96) which would also be of benefit to retain. While transplanting could occur the estimated fees (\$35 to \$40 K) takes a potentially large slice from the overall budget. Adaption of the site design would potentially be the preferred option to retain this tree. It would necessitate the retention of an undisturbed TPZ for the most part with the potential for some encroachment based on further assessment.
- 4.5 As noted in the introduction there are many alternatives to developing over and about tree roots which exclude the need for potentially damaging excavation where tree roots are lost and tree health declines. These include but are not limited to:
 - No dig path and road ways laid over root zones with permeable final upper trafficable material e.g. porous bitumen, permeable pavers
 - Confined cells laid path and roadways
 - Water harvest kerbing and storage systems
 - Above ground pier supported trafficable systems (e.g. ARBORGRID)

Further information, design details and reference material is available at the following sites;

- https://citygreen.com/products/
- http://www.typargeosynthetics.com/applications/stabilization.html
- http://terram.com/products/geocells/tree-root-protection-geocell.html

Image 4 – no dig pathway installed over tree roots Image 5 – Geocells pre instalment of trafficable material

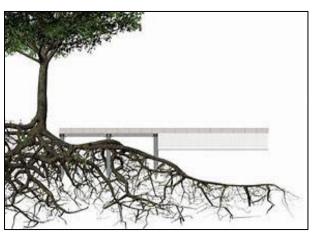


Image 6 - ARBORGRID set over tree roots

Image 7 – installed ARBORGRID

- 4.6 Other than the clear benefits that trees are not harmed in critical root zone areas, it allows the development into root zones that would be impossible if traditional excavation was undertaken.
- 4.7 Image 8 (Page 15)outlines what are considered the areas with the highest retention values and provides an opportunity for an assessment of overhead design amendments. It is not the purpose of this report to direct engineering decisions and the real site requirements for refuse recycling remains with the design and approval parties.
- 4.8 The introduction of pests and disease to development sites is an important consideration. It is pointless retaining trees if a known, harmful pathogen has been introduced and has the potential to result in significant tree decline and death with the site. As daily green waste is delivered unchecked to the site and pathogens can be spread on the wheels of vehicles and feet of employees or visitors, some tests need to be undertaken. It is recommended that soil samples be taken from the two noted native area zones and tests be undertaken to ensure *Phytophthora* is not present. This root borne soil pathogen has the potential to affect all native species other than the Tuarts with rapid decline likely. The City is also advised to consider the installation of entry and exit wheel wash bays which all vehicles pass through when visiting the site.

4.9 Table 1 provides Structural root zone (SRZ) and Tree protection zone (TPZ) areas for each tree on the site. These are areas defined in AS 4970 (2009) — Protection of trees on development sites and are based on the tree's diameter at ground level and breast height respectively. Below is the TPZ and SRZ descriptors from the standard. It is recommended that section 3 from the standard if thoroughly considered before any design considerations are finalised.

3.1 TREE PROTECTION ZONE (TPZ)

The tree protection zone (TPZ) is the principal means of protecting trees on development sites.

The TPZ is a combination of the root area and crown area requiring protection. It is an area isolated from construction disturbance, so that the tree remains viable.

3.3.5 STRUCTURAL ROOT ZONE (SRZ)

The SRZ is the area required for tree stability. A larger area is required to maintain a viable tree.

The SRZ only needs to be calculated when major encroachment into a TPZ is proposed.

Root loss inside the TPZ can result in tree decline and consultation should be undertaken before any work happens in these areas. The standard also lists what cannot happen inside a TPZ during construction, with the main objective being to eliminate root damage from machinery, chemical spill or storage reasons.

The SRZ is critical to tree stability and simply cannot be affected or high failure probabilities may result.

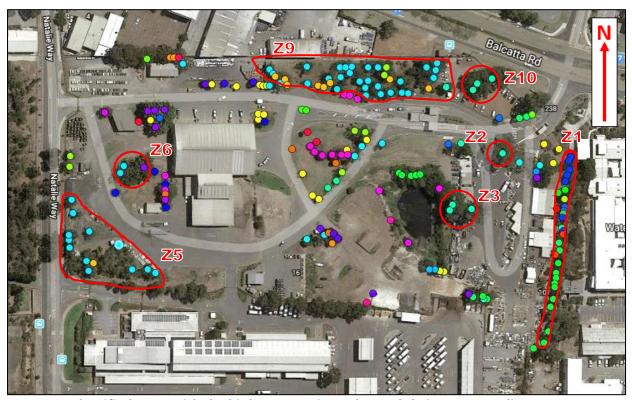


Image 8 – Identified areas with the highest retention value and their corresponding zones.

5 - RECOMMENDATIONS

- 5.1 Undertake soil samples and testing for *Phytophthora* in the two main native bush zones (Z5 and Z9). The results may have a critical impact on retention decisions and treatment requirements.
- 5.2 Review the Tree Details tables in conjunction with tree locations and compare against the design requirements to see where sensible amendments may be made to accommodate tree retention.
- 5.3 In conjunction with 5.2, review the alternative build options for setting new hardstand areas around trees.
- 5.4 Consider the transplant potential of trees noted for such, where they may be shifted on the site or other sites outside of the refuse centre.
- 5.5 Where tree retention is proposed have the new design proposal reviewed for confirmation that it is arboriculturally acceptable.
- 5.6 Where larger trees are proposed for retention, undertake remedial canopy work usually to remove larger deadwood and on occasion reduction of any distal load concerns.
- 5.7 Consider the option of installing entry and departure wheel wash facilities

Jack Payne - Tom Smith - Steve Kneebone

March 2019

Liability and Limitation

The report is to be considered in full and sections are not to be selected for legal consideration without advice and approval from CTS. No portion of this report may be forwarded without the expressed permission of the author

<u>APPENDICIES - TREE IMAGES</u>

TREE 001 TREE 002

TREE 003 TREE 004

TREE 005 TREE 006

TREE 008

TREE 009 TREE 010

TREE 011 TREE 012

TREE 013 TREE 014

TREE 015 TREE 016

TREE 017 TREE 018

TREE 020 **TREE 019**

TREE 021 TREE 022

TREE 023 TREE 024

TREE 026

TREE 027 TREE 028

TREE 029 TREE 030

TREE 031 TREE 032

TREE 033 TREE 034

TREE 035 TREE 036

TREE 037 TREE 038

TREE 039 TREE 040

TREE 041 TREE 042

TREE 045 TREE 046

TREE 047 TREE 048

TREE 049 TREE 050

TREE 051 TREE 052

TREE 053 TREE 054

TREE 061 TREE 062

TREE 063 TREE 064

TREE 065 TREE 066

TREE 067 TREE 068

TREE 069 TREE 070

TREE 071 TREE 072

TREE 073 TREE 074

TREE 075 TREE 076

TREE 077 TREE 078

TREE 080

TREE 081 TREE 082

TREE 083 TREE 084

TREE 086

TREE 087 TREE 088

TREE 089 TREE 090

TREE 091 TREE 092

TREE 093 TREE 094

TREE 095 TREE 096

TREE 098

TREE 099 TREE 100

TREE 101 TREE 102

TREE 103 TREE 104

TREE 105 TREE 106

TREE 107 TREE 108

TREE 109 TREE 110

TREE 111 TREE 112

TREE 113 TREE 114

TREE 117 TREE 118

TREE 119 TREE 120

TREE 121 **TREE 122**

TREE 123 TREE 124

TREE 125 **TREE 126**

TREE 129 TREE 130

TREE 131 TREE 132

TREE 133 TREE 134

TREE 135 TREE 136

TREE 137 TREE 138

TREE 139 TREE 140

TREE 141 TREE 142

TREE 143 TREE 144

TREE 145 TREE 146

TREE 147 TREE 148

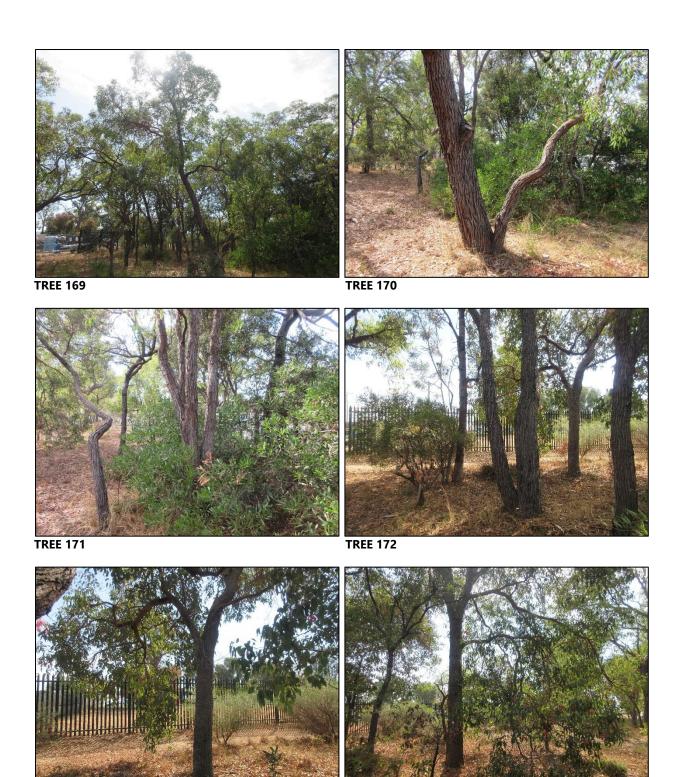
TREE 149 TREE 150

TREE 153 TREE 154

TREE 155 **TREE 156**

TREE 159 TREE 160

TREE 161 TREE 162



TREE 165 TREE 166

TREE 167 TREE 168

TREE 173 TREE 174

TREE 178

TREE 179 TREE 180

TREE 181 TREE 182

TREE 183 TREE 184

TREE 185 TREE 186

TREE 187 TREE 188

TREE 189 TREE 190

TREE 191 TREE 192

TREE 193 TREE 194

TREE 195