

TRILOGY GOLD AND BASE METAL PROJECT

HYDROGEOLOGICAL INVESTIGATION: RESULTS OF EXPLORATORY DRILLING, CONSTRUCTION OF A TEST PRODUCTION BORE, TEST PUMPING AND NUMERICAL MODELLING

MARCH 2004

REPORT FOR TECTONIC RESOURCES NL

253.1/04/001

76 Jersey Street Jolimont 6014 Western Australia ABN: 43 008 804 653 Postal: PO Box 201 Wembley 6913 Western Australia Ph: 61 8 9284 0222 Fax: 61 8 9284 1785 Email: consult@rockwater.com.au www.rockwater.com.au

TABLE OF CONTENTS

1	INTI	RODUCTION	1
2	HYD	DROGEOLOGICAL SETTING	1
	2.1	Climate	1
	2.2	Geology	1
3	DRI	LLING RESULTS	2
	3.1	Monitoring Bores	2
	3.2	Test Production Bore	4
4	WAT	TER QUALITY	4
5	PUM	IPING TEST	5
	5.1	Step-Rate Test	5
	5.2	Constant rate test	6
6	NUN	IERICAL MODELLING OF PIT DEWATERING	7
	6.1	DESCRIPTION OF GROUNDWATER MODEL	7
	6.2	Model Calibration	9
	6.3	Model Runs 6.3.1 Modelling Results 6.3.2 Sensitivity Analysis	9 9 9
	6.4	Discussion of Modelling Results	10
7	SUM	IMARY AND CONCLUSIONS	10
	REF	ERENCES	11

Tables

Table 1 – Summary of Monitoring Bore Details	3
Table 2 – Calculated Hydraulic Conductivities and Storage Coefficients for Trilogy	7
Table 3 – Adopted Model Parameters	8

Figures

- Figure 1 Trilogy Deposit Location Map
- Figure 2 Trilogy Bore Location Plan
- Figure 3 Trilogy Water Level Contours
- Figure 4 Production Bore TPB1
- Figure 5 Groundwater Treatment pH vs Alkali Demand
- Figure 6 Bore TPB1 Constant Rate Pumping Test
- Figure 7 TPB1 Constant Rate Pumping Test Drawdown Bores TMB3, TMB4 & TMB5
- Figure 8 TPB1 Constant Rate Pumping Test Drawdown Bores TMB1, 2, 6 & 8
- Figure 9 Drawdown after 48 hours Pumping
- Figure 10 Comparison between Modelled & Extrapolated Water Level Drawdown Trends
- Figure 11 Comparison between Modelled, Measured Drawdown after 48 Hours Pumping

Appendices

- Appendix I Trilogy Monitoring Bore Completion Data
- Appendix II Production Bore Completion Data
- Appendix III Water Quality Data TPB1

1 INTRODUCTION

Tectonic Resources is planning to mine the Trilogy gold and base metal deposit east of the Hopetoun - Ravensthorpe road, approximately 30 km south of Ravensthorpe (Fig. 1). As part of the statutory Notice of Intent (NOI) to mine, an exploratory groundwater drilling programme has been conducted to establish background conditions and assess pit dewatering requirements.

This report presents the results of the exploration programme conducted in January 2004; it provides bore construction and pumping test details, and assesses the likely dewatering requirements using numerical groundwater modelling techniques.

2 HYDROGEOLOGICAL SETTING

2.1 CLIMATE

Ravensthorpe has a Mediterranean-type climate with cool wet winters and warm to hot, dry summers. The average annual rainfall is 425 mm (508 mm at Hopetoun), and potential annual evaporation is about 2,000 mm.

2.2 GEOLOGY

The Trilogy deposit is located in an area of phyllitic schist and carbonaceous shale (with minor quartzite) of the Proterozoic Mount Barren Beds. These beds unconformably overlie the Archaean succession of the southern part of the Yilgarn Block.

The mineralisation occurs within a zone of silicified shale and minor sandstone that dips to the south-east at about 40 degrees. The hanging wall consists of laminated shale, which is vuggy in places: the footwall is more massive.

The siliceous mineralised zone forms the main aquifer. The permeability is associated with vugs and fractures, which also occur locally in the hanging wall and less commonly in the footwall.

Groundwater levels are about 34 m below ground level.

253.1/04/01

3 DRILLING RESULTS

Drilling was conducted between 6 and 25 January 2004, by Resource Drilling using a Schram T66H rig. Eight exploration holes were drilled and completed as monitoring bores, and the results used to select a site for a test-production bore. The locations of the bores are shown in Figure 2.

3.1 MONITORING BORES

The monitoring bores range in depth from 76 m (Bores TMB2, TMB5 and TMB8) to 160 m (Bore TMB3). Down-hole hammer, reverse-circulation methods were used, drilling at 200 mm diameter to 3 m and installing 154 mm diameter steel surface casing before drilling at 140 mm diameter to total depth. The bores were cased with 50 mm diameter PVC, slotted over the aquifer interval, and sealed at the surface using quickset cement. The bore construction details are summarised in Table 1, and are presented with geological and hydrogeological data in Appendix I.

Maximum airlift yields ranged from a trace in Bore TMB8 to 240 m^3 /day in Bore TMB4. The airlift yields might under-estimate potential flows because of the drilling technique employed (reverse circulation) and small hole diameter. A cross-over sub was put in the drill string at various intervals to maximise airlift yield, but made no observable difference to flows.

The groundwater flows measured during drilling in TMB3 and TMB4 coincide closely with the silicified mineralised zone, indicating that this is the main zone of permeability.

Static water levels range from about 51.34 m AHD in the north-west (TMB8) to 55.24 m AHD in the east (TMB6), indicating groundwater flow towards tributaries of the Steere River to the north-west: water level contours are shown in Figure 3. The hydraulic gradient appears to be contrary to local and regional topography. This will need to be confirmed in future monitoring events, as water levels may be affected by low recovery rates and/or air-entrainment.

Salinity (by electrical conductivity) ranged from 15,200 mg/L TDS in TMB5 to 25,400 mg/L TDS in TMB4. Field pH measurements ranged from 3.3 in the mineralised zone to 8.0 in one of the regional monitoring bores (Table 1).

Rockwater Pty Ltd

Table 1 – Summary of Monitoring Bore Details

Bore	Exploration Site	Location	(MGA)	Elevation	Depth Drilled	Slotted Interval	Top of Casing	Static Water Level	Maximum Airlift Yield	Salinity	Average Field pH ⁴
		(mN)	(mE)	(m AHD)	(m bgl)	(m bgl)	(m agl)	(m btc ¹)	(m ³ /d)	(mg/L TDS) ²	
TMB1	А	6 261 661	241 797	85.90	100	64 - 100	0.14	33.52	40	22,200	6.9
TMB2	F	6 262 136	242 037	89.58	76	46 - 76	0.32	37.57	40	16,400	8.0
TMB3	С	6 261 402	241 687	84.19	160	101 - 155	-	31.72	120	23,300	3.9
TMB4	D	6 261 441	241 619	85.64	100	58 - 94	0.36	33.56	240	25,400	4.4
TMB5	В	6 261 309	241 530	85.64	76	52 - 76	0.39	33.48	40	15,200	4.7
TMB6	G	6 261 406	242 267	86.37	82	58 - 82	0.5	31.93	35	16,900	6.2
TMB7	Н	6 260 641	242 397	80.87	88	64 - 88	0.44	27.23	40	23,100	6.5
TMB8	Е	6 261 841	240 877	90.26	76	46 - 76	0.31	39.61	Trace	16,500	6.8

1. Top of PVC casing, 28/1/2004

2. By electrical conductivity

3. Measured 1/2/04

4. Measured with pH paper.

3.2 TEST PRODUCTION BORE

The test-production bore site (TPB1) was selected on the basis of the maximum airlift yield measured during the drilling of the monitoring bores. It is located about 10 m north-east of monitoring bore TMB4, where an airlift yield of 240 m³/day was measured at 94 m depth. Bore TPB1 was drilled using down-hole hammer methods at 330 mm diameter to 6 m, with 254 mm diameter mild steel surface casing installed before drilling at 254 mm diameter to total depth (95.5 m).

The hole was cased with 152 mm diameter, Schedule 40 steel, slotted over the basal 30 m (64.8 m to 94.8 m) and open at the base. An annular seal, comprising a rubber ring attached to a steel flange, was installed above the slotted interval at 64.8 m to prevent the overlying clays from falling down the annulus and blocking the slots. The annulus was sealed at ground level with Gypset cement.

The bore was developed for three hours until the water was reasonably clear and free of fine drill cuttings. The final airlift yield was 255 m^3/d with salinity approximately 25,000 mg/L TDS (by electrical conductivity) and field pH about 3.8.

Bore construction details are provided in Appendix II and Figure 4.

4 WATER QUALITY

A water sample was collected immediately before the end of the constant-rate pumping test and was analysed by SGS Laboratories; the results are presented in Appendix III. The laboratory results indicate the groundwater from the bore is saline (18,000 mg/L TDS) and of sodium-chloride type with relatively high concentrations of magnesium and sulphate.

Acidic water with a field pH of 3.3 to 3.8 was intersected below 90 m depth in TMB4, and below 110 m depth in TMB3, in the siliceous mineralised zone. The water was apparently less acidic higher in the mineralised zone in TMB4 (about 5.6), although this could be an artefact of low flows and high silt content of the water. Near neutral or slightly alkaline groundwater was present in the surrounding country rocks.

Water pumped from the test-production bore TPB1 during the pumping test was very acidic, with a laboratory pH of 2.8, and contained highly elevated levels of soluble iron (96 mg/L). The high levels of iron are probably due to the acidic groundwater conditions and mineralised nature of the aquifer in this location. Subsequent analyses for additional metals (Appendix III) indicated concentrations of zinc (160 mg/L) and lead (7.7 mg/L) are

also highly elevated in this bore. TPB1 is open to the aquifer from 64.8 to 94.8 m depth, and draws most of the water from 88 to 94 m depth.

The low pH groundwater in the mineralised zone and footwall is associated with a high sulphur content resulting from the various forms of pyrite. Sulphur generally ranges from 9 to 15% in the mineralised zone, and up to 40% in the overlying supergene zone (Dave Jackson, pers. comm.). There is less sulphur in the country rocks, typically 1 to 2%, where the groundwater pH circum-neutral. The low pH below 90 m depth in TMB3 and TMB4 is possibly related to the relatively high sulphur content, which is up to 15% in the lower part of TMB4 and about 9% in TMB3. These high sulphur zones are well below the base of oxidation at about 40 m depth.

Permeability is associated with the mineralised zone, particularly where transitional from weathered to fresh. Most of the water will be pumped from this zone, and it is predicted that the low pH will dominate disproportionately in mixtures of acidic to slightly acidic groundwater (Graeme Campbell, pers. comm.). For example, pumping a mixture of water of pH 3.3 and pH 5.6 could result in a pH of about 3.5 to 3.6.

Further samples were collected from the production bore (TPB1) and TMB1 to test treatment requirements for the groundwater. The samples had a pH of 5.2 and 7.4, respectively. The testing indicated that the groundwater could be neutralised readily and economically by the addition of lime. The results are shown in Figure 5.

5 PUMPING TEST

The production bore was test-pumped to determine long-term pumping rates and aquifer characteristics. Bennett Drilling carried out the pumping test between 27 and 30 January 2004, using an electric submersible pump. Water levels were measured manually in the production bore and observation bores using a graduated electronic probe.

5.1 STEP-RATE TEST

A step-rate pumping test was conducted on 27 January 2004 at four flow rates (75, 150, 250 and 350 m^3 /day) each for an hour, to determine an appropriate pumping rate for the 48-hour constant rate test. A discharge rate of 300 m^3 /day was selected.

Because of anomalous results obtained from the constant-rate pumping test (Section 5.2), the results from the step-test were also used to assess the production bore efficiency using Bierschenk and Wilson, and Sheahan's analyses. The analyses indicated that well losses in the bore are between 70 and 90 % for flow rates of 300 m^3/d ; i.e. up to 90% of the water

level drawdown observed during pumping could be due to turbulent flow losses as water enters the bore, rather than drawdown in the aquifer. Reduced bore efficiency can result from partial penetration of the aquifer, low open area of the slotted casing (eg from narrow slot aperture or widely spaced slots in the casing), or the effects of air or gas in the groundwater.

5.2 CONSTANT RATE TEST

Production bore TPB1 was pumped at a constant rate of 300 m^3 /day for 48 hours from 28 January 2004. Water levels were monitored during the test in the pumped bore (Fig. 6), and in monitoring bores TMB1 to TMB6 and TMB8. Significant water level drawdowns were only observed in monitoring bores TMB3 to TMB5 (Fig. 7). Minor water level variation in bores TMB1, 2, 6 and 8 (Fig. 8) were most likely due to changes in barometric pressure.

Difficulties were experienced in maintaining a constant flow rate during the test because of an unusually high gas content in the water (probably air entrained during drilling).

The final water level drawdown in the production bore was 23.2 m, compared to a drawdown of 2.1 m in monitoring bore TMB4, only 10 m away. Monitoring bore TMB4 is along-strike of the production bore, and at that distance should have similar water level drawdowns to those in the production bore. The large discrepancy is probably due mainly to reduced bore efficiency (Section 5.1), and possibly restricted hydraulic connection between the two bores.

Similarly, water level drawdowns of only 0.45 m in monitoring bore TMB3 (about 75 m away) and 0.96 m in monitoring bore TMB5 (about 160 m away) are also likely to be the result of low aquifer drawdown around the production bore, and possibly some restricted hydraulic connection between these monitoring bores and the production bore. In addition, the distribution of water level drawdown, with larger drawdowns observed in TMB5 than TMB3, which is closer to the production bore, suggests the aquifer is anisotropic with higher hydraulic conductivities occurring along-strike than across-strike. Contours of final water level drawdowns in the monitoring bores are illustrated in Figure 9.

The water level drawdown trends observed in monitoring bores TMB3 to 5 (Fig. 6) are typical of a strongly bounded aquifer, and suggest that the aquifer is of limited extent and is surrounded by rocks of low permeability. However, the water level drawdown trend in the production bore is typical of a laterally-extensive aquifer (with no obvious boundary effects), and so the trends observed in the monitoring bores are probably due more to restricted hydraulic connection between the bores in the early stages of pumping, rather than aquifer response.

Analysis of the drawdown in TPB1 (Fig. 6) using Theis and Cooper-Jacob methods indicates a hydraulic conductivity of about of about 0.4 m/d, although assessment of water level data corrected for 70% well loss and late time recovery data suggest the hydraulic conductivity could be higher, in the order of 1.5 to 4 m/d. Analysis of the drawdown in the observation bores using the same methods, indicates hydraulic conductivities ranging from about 0.8 to 17.4 m/d (average about 8 m/d), and storage coefficients ranging from 0.0008 and 0.001. The results are provided in Table 2. Variable hydraulic conductivity is typical in a fractured rock aquifer; however, some of the higher values are probably the result of the restricted hydraulic connection with the pumping bore, and are therefore higher than true values.

Bore	Final Water Level	Hydraulic	Storage Coefficient
	Drawdown (m)	Conductivity (m/d)	
TPB1	23.29	0.4	-
TMB3	0.45	3.5	0.001
TMB4	2.11	0.76	0.002
TMB5	0.96	0.89	0.0008

6 NUMERICAL MODELLING OF PIT DEWATERING

It is understood that the proposed pit will be excavated down to between 37 and 100 m depth, probably in stages over a period of several years. The pit outline is shown in Figure 2.

The numerical groundwater model was constructed using structural data provided by Tectonic Resources, data obtained from the water exploration drilling and pumping test, the Ravensthorpe 1:250,000 geological series map (Thom et al, 1977), and qualitative information derived from inspection of cores and from core logs. The model was designed to assess likely dewatering pumpage requirements.

6.1 DESCRIPTION OF GROUNDWATER MODEL

The groundwater model uses PMWIN, which incorporates Modflow, the industry-standard finite-difference groundwater modelling software designed by the U.S. Geological Survey (McDonald and Harbaugh, 1988). It consists of a variable rectangular grid of 56 rows and

53 columns and two layers covering an area 2.8 km east-west by 3.7 km north-south, centred on Trilogy. Model cells range in size from 25 m x 25 m at Trilogy, to 500 m x 500 m in some peripheral areas.

Layer 1 represents the phyllitic schist and schistose black shales of the hanging wall, which did not yield any significant water flows during drilling. Layer 2 represents fractured water-bearing zones, predominantly in the siliceous mineralised zone and overlying supergene zone of the planned pit area, as well as unfractured shale in peripheral areas. The aquifer interval was contoured from water intersections identified during drilling, and is between 6 m and 40 m thick. Groundwater levels were assumed to be at 33.5 m bgl.

Values of hydraulic conductivity and storage coefficient derived from the pumping test results (Table 2) were used as initial values in the model.

Other assumptions made in assigning initial aquifer parameters include:

- The aquifer is of significant areal extent;
- The aquifer is anisotropic, with higher hydraulic conductivities along-strike than across-strike;
- Recharge to the aquifer is insignificant over the period of dewatering;
- Vertical hydraulic conductivity is one tenth of horizontal hydraulic conductivity.

Values of hydraulic conductivity, storage coefficient and anisotropy were varied during the model calibration, as described in Section 6.2. Adopted model parameters after calibration given in Table 3.

Parameter		Trilogy	Adjoining
			Areas
Horizontal Hydraulic Conductivity (K _H):	Layer 1	0.2 m/d	0.2 m/d
	Layer 2	0.5 to 6 m/d	0.1 to 2 m/d
Specific Yield:	Layer 1	0.01	0.01
	Layer 2	0.015	0.015
Storage Coefficient:	(Layer 2)	0.0035	0.0035
Anisotropic Ratio	Layer 2	0.08	0.08
(= K _H across strike/K _H along strike)			
Recharge:		0 mm/d	0 mm/d
Static Groundwater Level:		33.5 m bgl	33.5 m bgl

Table 3 – Adopted Model Parameters

6.2 MODEL CALIBRATION

The model was calibrated to the pumping test results for TPB1 using the water level trends in monitoring bores TMB3 to TMB5, and the trend in the production bore after adjustment for well losses. Model-calculated water level drawdowns after calibration are compared with measured drawdowns and extrapolated trends in Figure 10, and modelled water-level contours after 48-hours pumping are shown in Figure 11. The results indicate an acceptable correlation between the extrapolated and modelled drawdown trends.

6.3 MODEL RUNS

Initially, the pit at Trilogy is likely to extend to about 37 m depth, with subsequent intermittent mining to a final depth of possibly 100 m. The model was run using MODFLOW's drain package to estimate pumping requirements to dewater the pit to 37 m and 100 m depth. It was assumed that dewatering would be over two months in mining below the water table, from 33.5 m to 37 m depth, and a further 12 months to a final depth of 100 m.

6.3.1 Modelling Results

The results indicate that an average pumping rate of about 250 m^3/d will be needed over two months to dewater to 37 m depth, during Stage 1 of mining.

To lower groundwater levels to 100 m depth, a total pumping rate of about 2,500 m³/d would be required over a period of about 12 months. Inflows to the pit at this depth, once pumping was stopped, are calculated to be of the order of 1,700 m³/d initially, decreasing to about 1,400 m³/d after six months. Therefore, any suspension of mining could result in significant additional pumping.

6.3.2 Sensitivity Analysis

The model was run to test the sensitivity of the calculated dewatering pumping rate to possible variations in specific yield, the value of which had little or no impact on model calibration.

If the specific yield was 0.03 rather than 0.01 (Layer 1), or 0.015 (Layer 2), the average pumping requirement to lower groundwater levels to 37 m below ground level would be

about 300 m³/d. If groundwater levels needed to be lowered to 100 m, the average pumping requirement would increase to about 2,800 m³/d over 12 months.

6.4 DISCUSSION OF MODELLING RESULTS

The modelling results assume that the aquifer is areally extensive (although of lower permeability outside of the Trilogy area), based on the drawdown trend observed in the production bore. After an extended period of pumping, the rate of water-level decline could increase as the expanding drawdown cone intersects boundaries to the aquifer. If that was the case, then the average dewatering rates could be lower: around half of those indicated above for dewatering to an 100 m-deep pit. Conversely, pumping rates could be higher if there are other areas of high permeability along-strike of the Trilogy deposit.

7 SUMMARY AND CONCLUSIONS

Eight groundwater exploration holes were drilled to test the carbonaceous shale host rock and fractured/mineralised zones of the Trilogy orebody. Airlift yields from the holes ranged from $<20 \text{ m}^3/\text{d}$ to 240 m³/d, with only two holes having airlift yields $>50 \text{ m}^3/\text{d}$. The groundwater is contained within fractures, joints and vugs in the silicified shales of the mineralized zone and overlying supergene zone.

The groundwater has a salinity of about 18,000 mg/L TDS, and in the mineralised zone and underlying footwall is acidic, with pH as low as 2.8 in the deeper parts of the aquifer. The high acidity and mineralised nature of the aquifer has apparently resulted in highly elevated concentrations of some metals, i.e. soluble iron (96 mg/L), zinc (160 mg/L) and lead (7.7 mg/L). Stage I of the pit might also intersect low pH water because of the high sulphur content of the supergene zone. Groundwater outside of the mineralised zone is circum-neutral: mixing this water with low pH water from the mineralised zone is unlikely to result in a significant increase in pH of the pumped water.

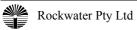
Testing indicated that treatment of the groundwater with lime is technically and economically feasible. If treatment is undertaken, therefore, water contained in the dam will have a neutral pH, and subsequently reduced metal concentrations.

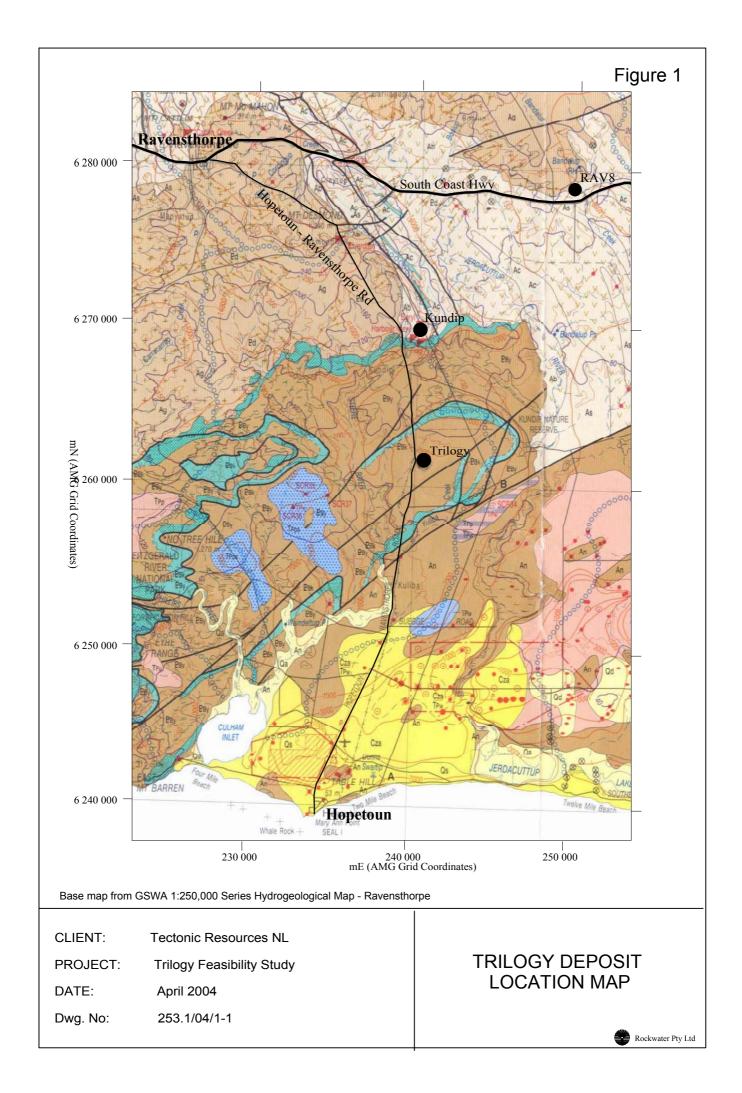
A test production bore (TPB1) was constructed about 10 m along-strike of the highest yielding exploration hole (TMB4) and test-pumped. The pumping test results indicated reduced bore efficiency in the production bore, with water level drawdowns much greater than those observed in nearby TMB4. This may be due to factors such as bore construction, air entrainment in the aquifer and/or restricted hydraulic connection between the production bore and TMB4.

Numerical modelling results indicate that an average pumping rate of about 250 m³/d could be required to lower groundwater levels to 37 m below ground level for the Stage I pit, and about 2,500 m³/d to lower groundwater levels to 100 m below ground level over 12 months, if deeper ore is mined. In-pit bores and/or sumps will be needed to achieve the required dewatering, although a perimeter bore in the vicinity of TMB3 could be constructed to assist with dewatering, if required.

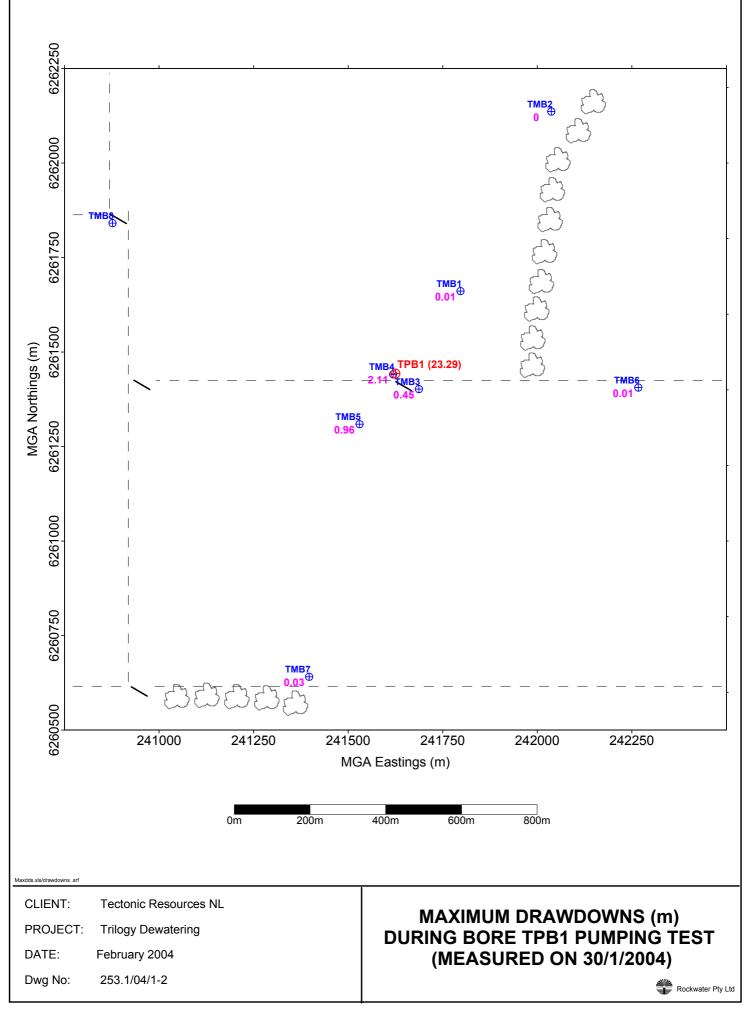
It is recommended that pumpage, water levels and water quality be closely monitored during initial dewatering, so that the hydraulic characteristics and water chemistry of the site can be confirmed, and if necessary the model can be re-calibrated to re-assess the capacity required for the disposal pond.

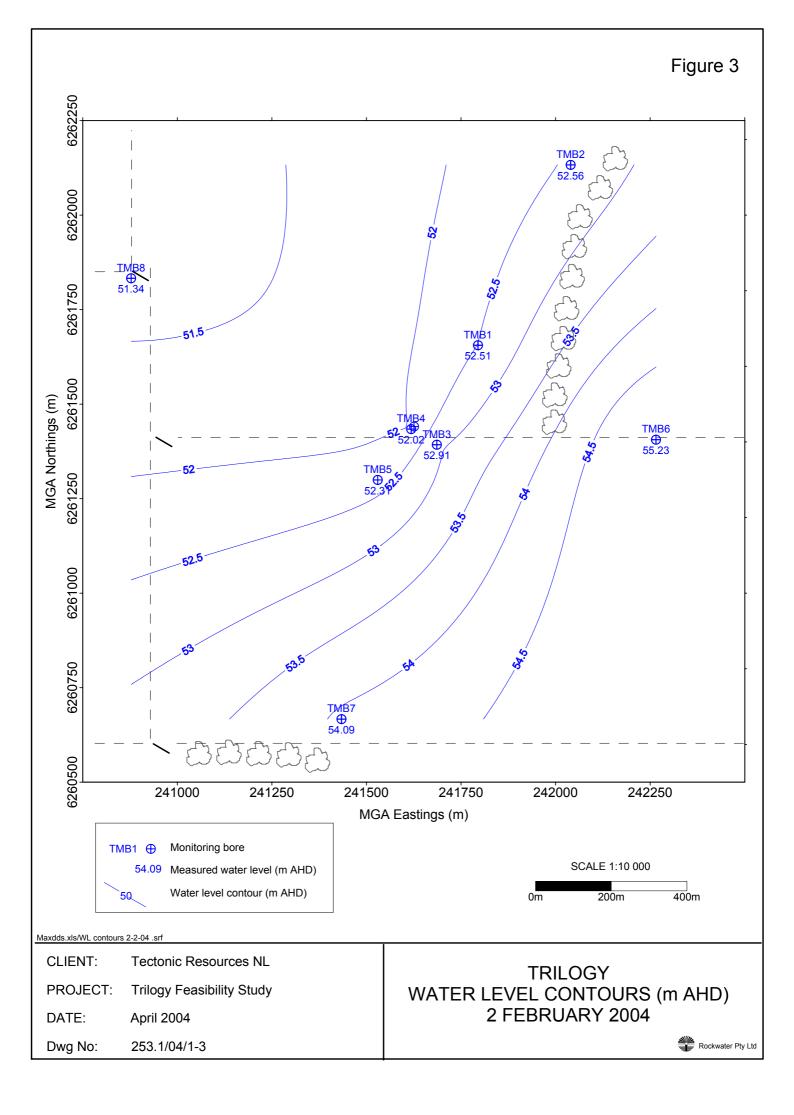
Dated: 17 March 2004

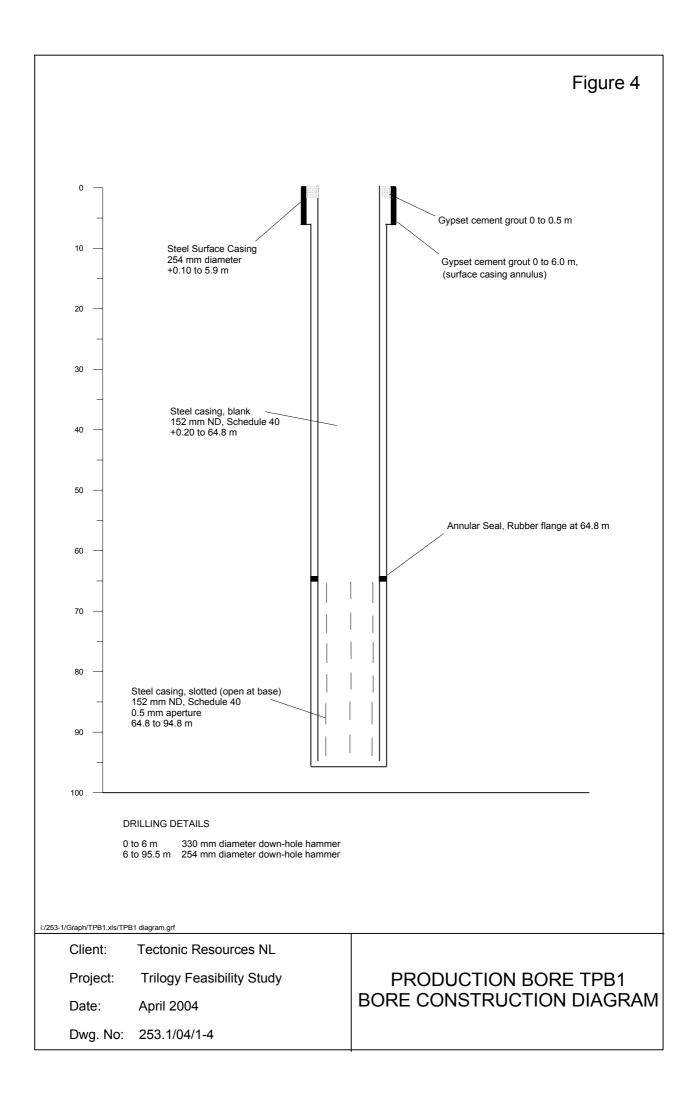

Rockwater Pty Ltd

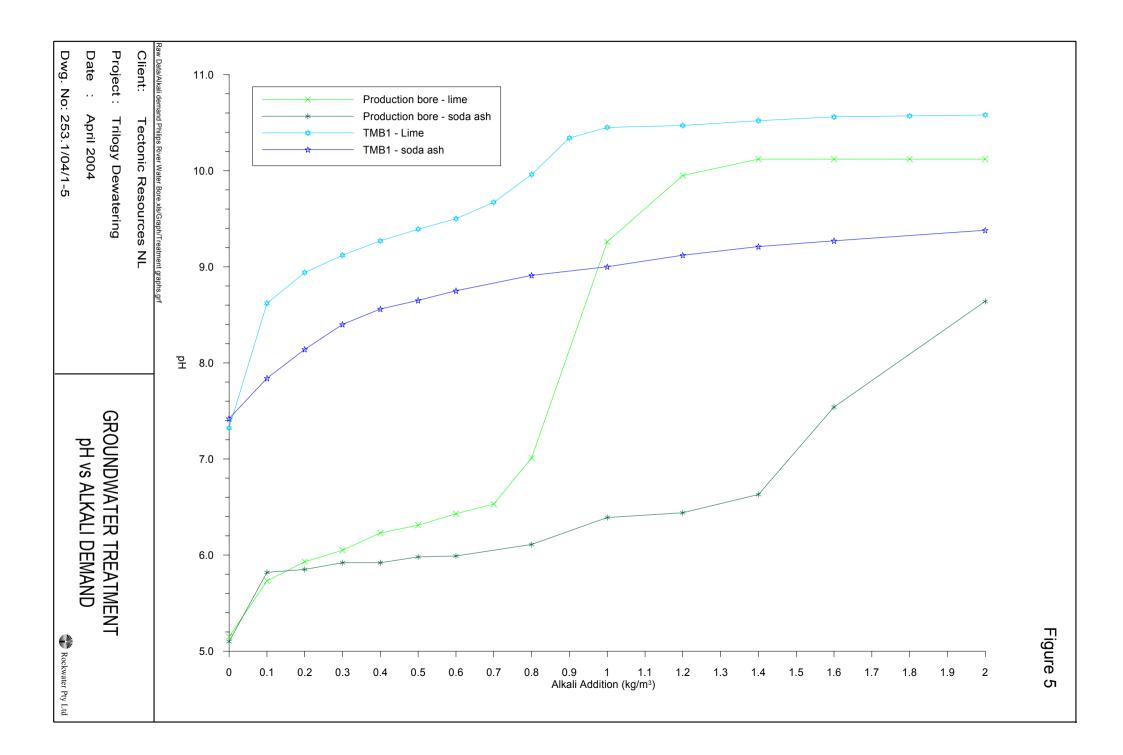

K J Rattray Senior Environmental Hydrogeologist

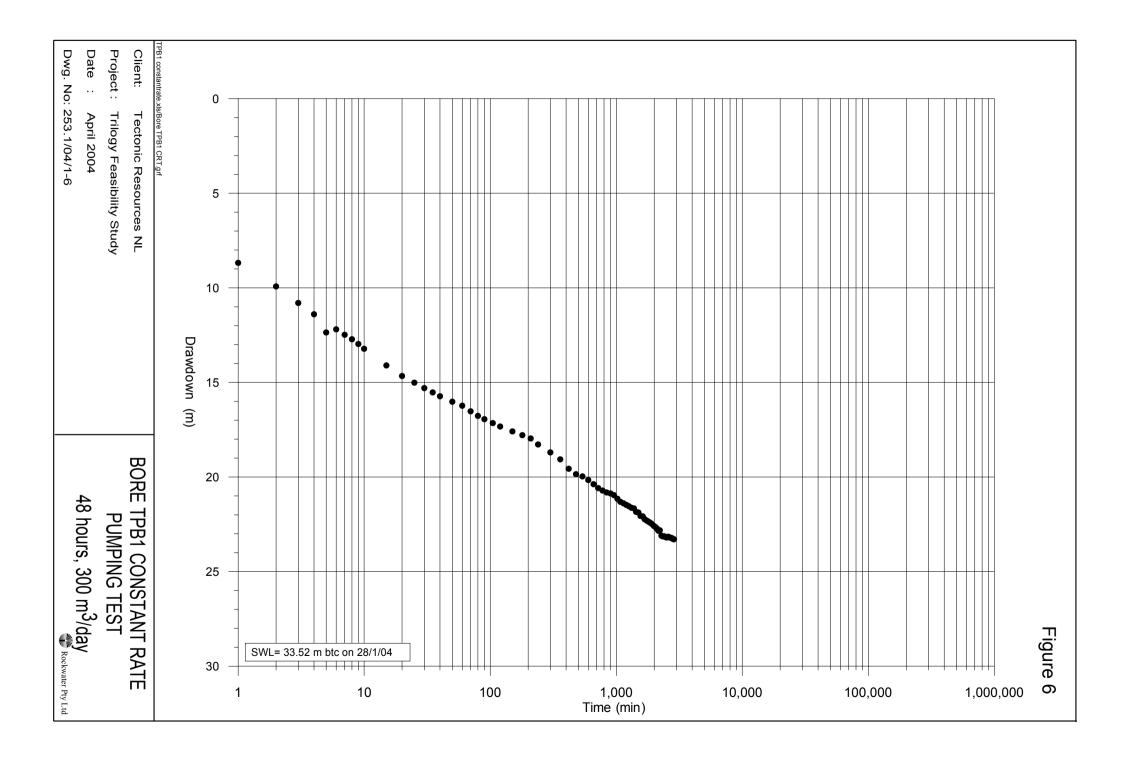
P H Wharton Principal Hydrogeologist

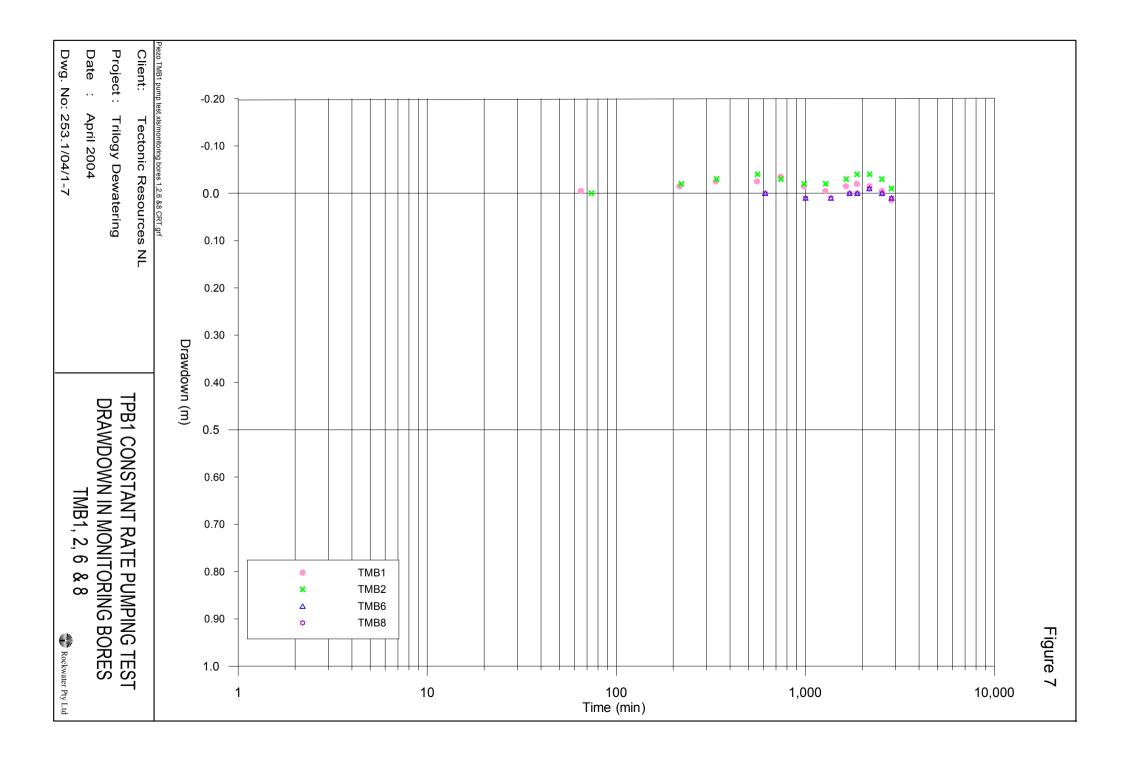

REFERENCES

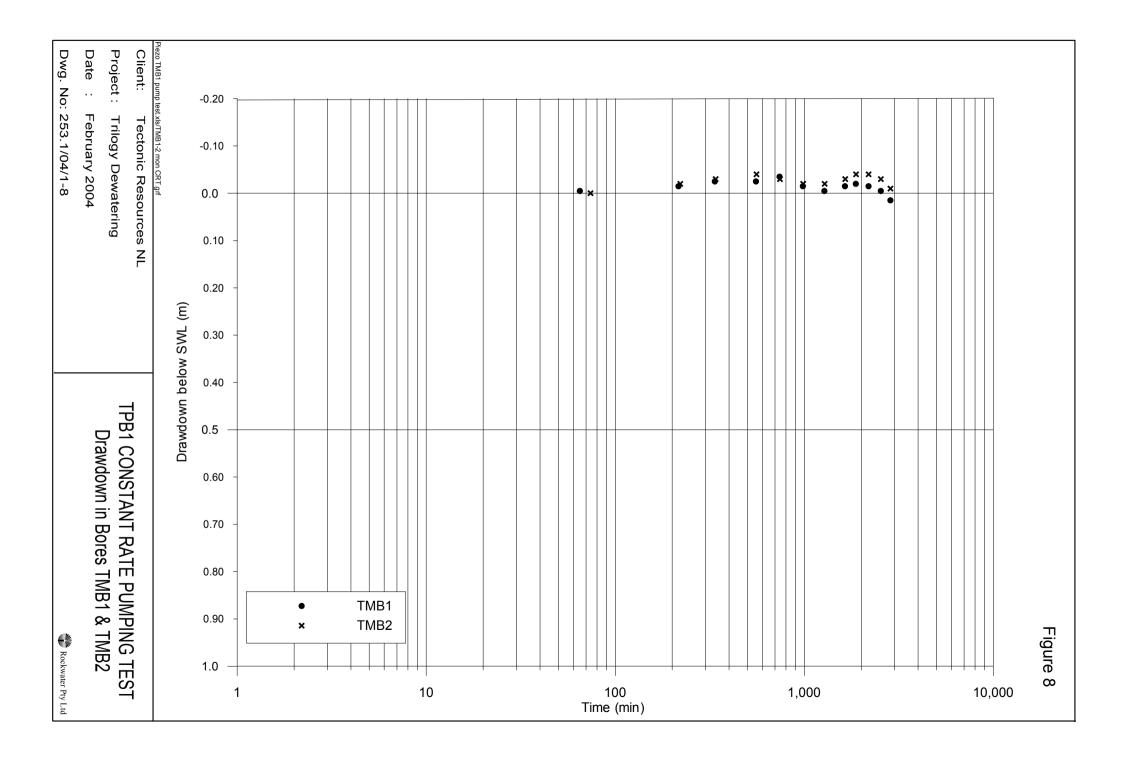

Thom R., Lipple SL. and Sanders CC., 1977. 1:250,000 Geological Series Explanatory Notes – Ravensthorpe, Western Australia. Geological Survey of Western Australia. Sheet SI/51-5 FIGURES

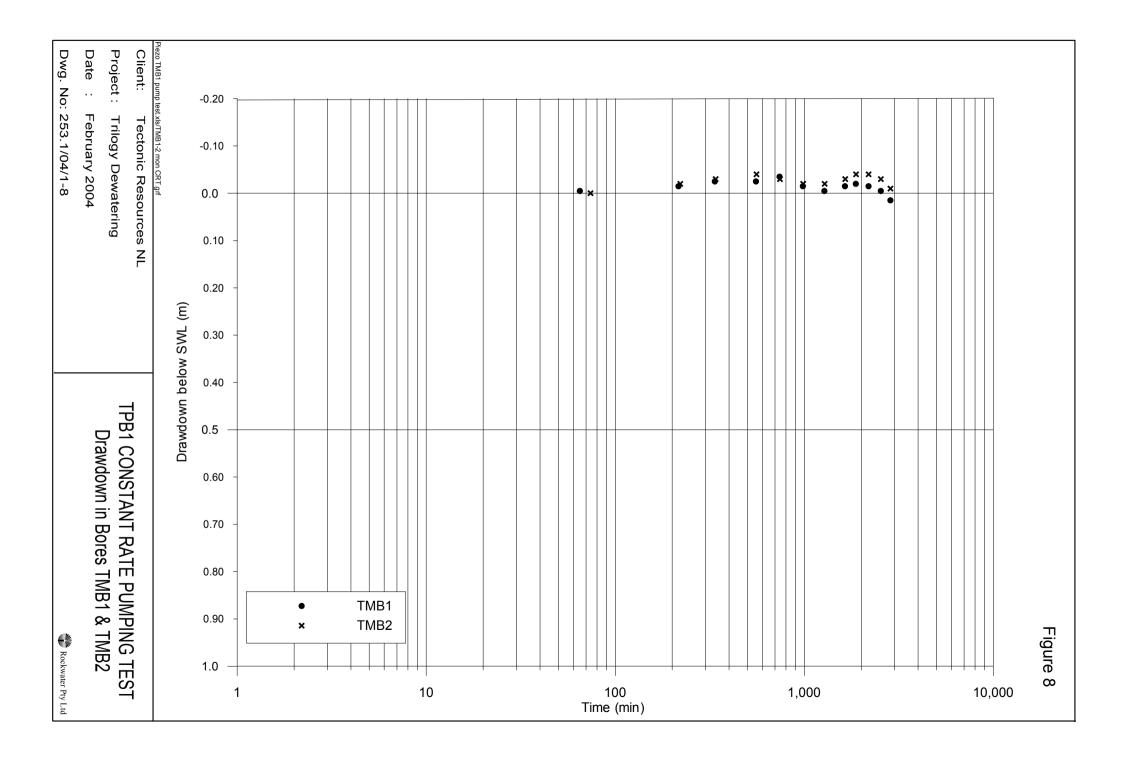


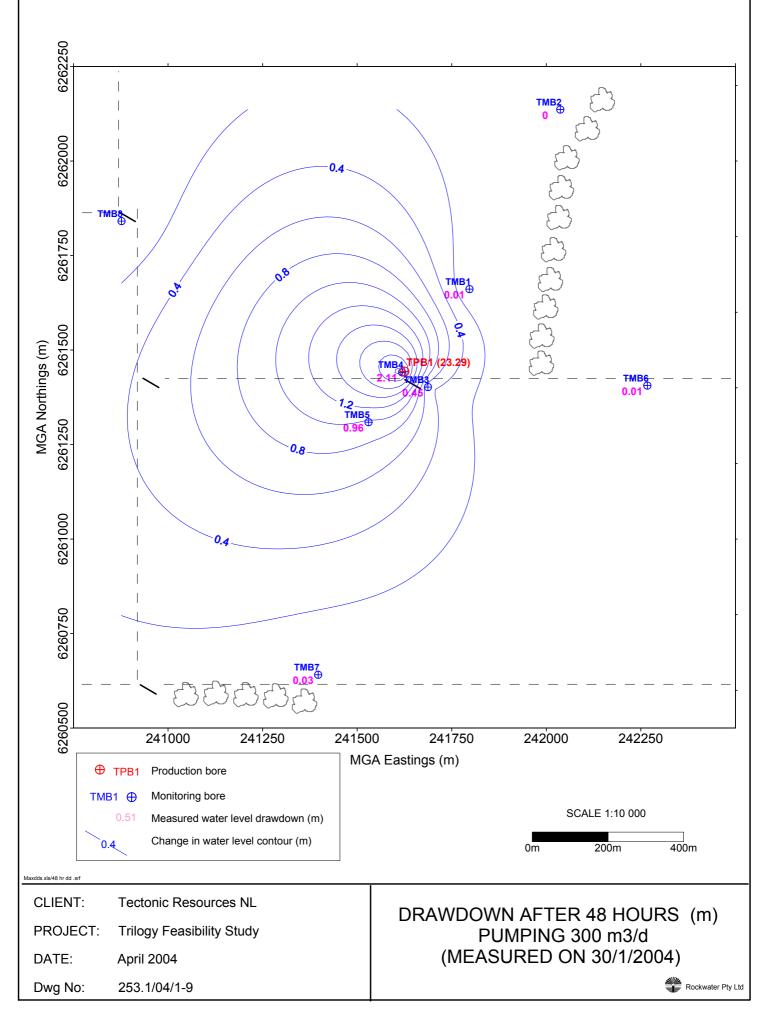


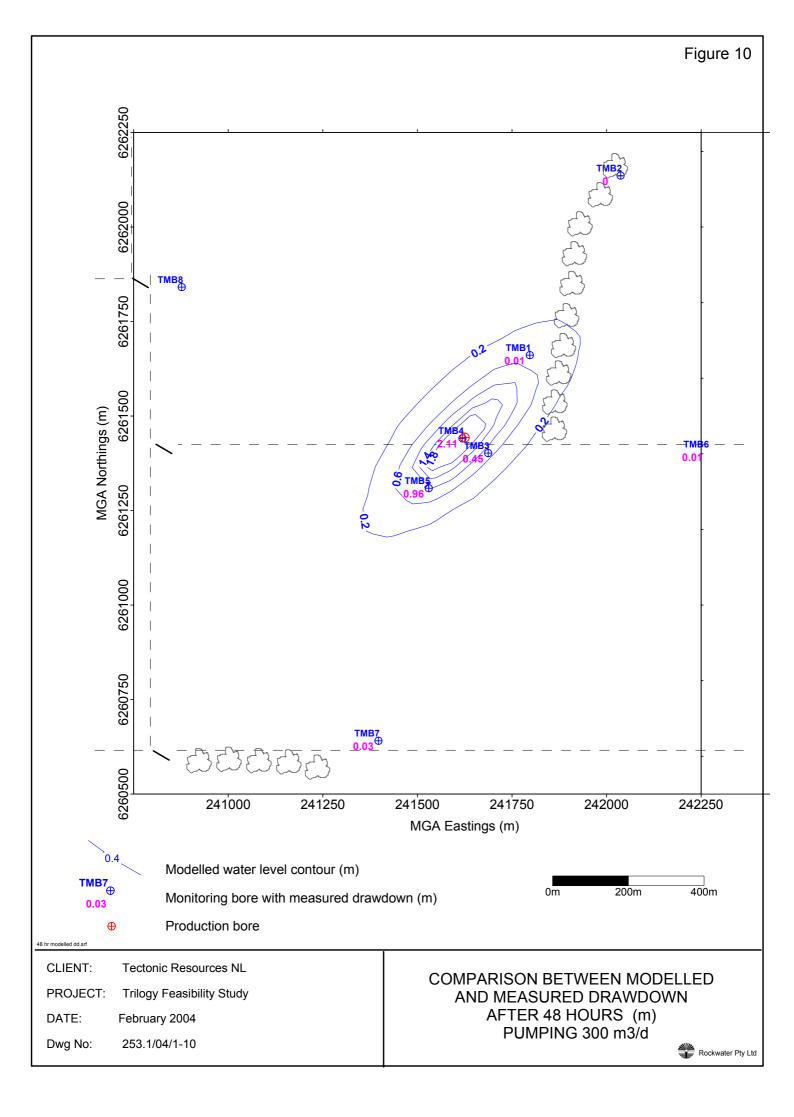


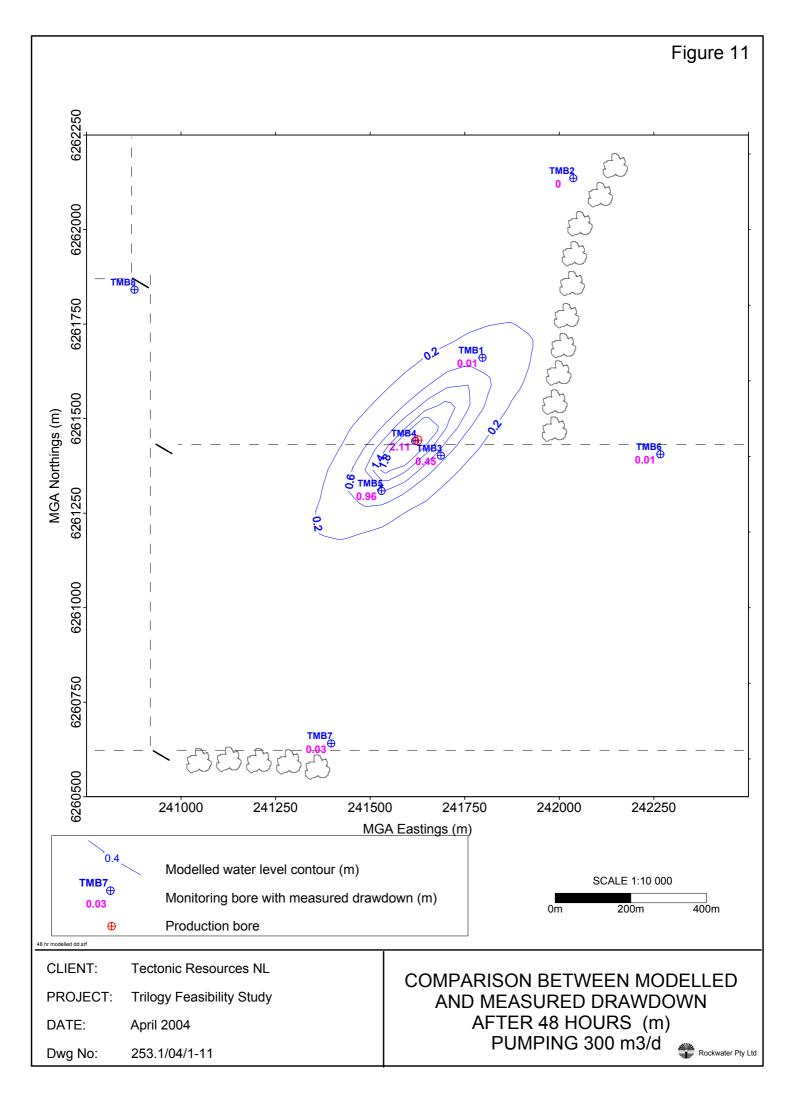


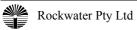











Figure 9

APPENDICES

TRILOGY MONITORING BORE COMPLETION DATA

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit					
Hole No:	TMB1					
Location:	Site A, North	Site A, North end of pit along strike				
MGA Co-ordinates:	241 797 mE, 6 261 661 mN					
Status:	Monitoring Bo	re				
Date Commenced:	6/1/04 Date Completed: 6/1/04					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	100 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 100 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm steel surface casing+0.14 - 64 m50 mm ND Class 9 uPVC Blank64 - 100 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)					
Static Water Level:	33.67 m below toc (15/1/04)					

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
58	Water Cut	-		-	-	
64	Trace	-		-	-	
70	17	31 700	24.8	21 400	6.8	Black
76	30	32 500	21.4	23 800	6.8	Black, silty
82	35	33 800	23.8	23 400	7.0	Black, silty
88	43	33 800	23.0	23 900	7.0	Black, silty

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
92	43	28 900	23.7	19 900	7.0	Poss. erroneous reading from cyclone
100	26	35 000	27.7	22 200	7.0	Black, silty

BORE COMPLETION DATA TMB1 (cont.)

Lithology:

Depth (m)	Lithology	Description
0 - 2	Clay	Brown, soft, gritty.
2 - 10	Clay / Highly Weathered schist	Brown (grey – yellow – pinkish), micaceous and soft with weathered rock fragments: grey, very fine grained, schistose, oxidised (pink and orange), micaceous sheen, quartz veining $8 - 9$ m.
10 - 11	Weathered schist	Light brown – grey, Light grey to dark grey, very fine grained, schistose, micaceous sheen.
11 - 18	(Phyllite) Schist	Light grey to dark grey, black, very fine grained, schistose, fresh.
18 - 33	(Phyllite) Schist	Black (some grey and red), fine grained, slightly silicified in part, slightly to moderately oxidised, schistose, becoming more massive with increasing depth.
33 - 100	Shale	Black, fine grained, graphitic, micaceous sheen, slightly silicified from $43 - 95$ m (thin quartz veining), grain size coarsening in part from 50 m, pyrite mineralisation from 50 - 53 m, oxidisation at 63 m (red).
100	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit					
Hole No:	TMB2					
Location:	Site F, Regional monitoring bore on veg. drainage line					
MGA Co-ordinates:	242 037 mE, 6	262 136 mN				
Status:	Monitoring Bore					
Date Commenced:	6/1/04 Date Completed: 6/1/04					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	76 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 76 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm steel surface casing+0.32 - 46 m50 mm ND Class 9 uPVC Blank46 - 76 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)					
Static Water Level:	37.85 m below toc (15/1/04)					

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
58	Minor	24 000	28.7	14 500	8.0	
64	<43	24 600	25.1	16 200	8.0	
70	22	26 200	26.3	16 900	8.0	
76	22	25 400	26.0	16 400	8.0	

BORE COMPLETION DATA TMB2 (cont.)

Lithology:

Depth (m)	Lithology	Description
0 - 1	Clay	Cream, soft, gritty.
1 - 7	Clay / Highly Weathered schist	Cream to buff, soft, gritty with bedrock fragments: oxidised schist, light grey to pink, very fine grained, micaceous sheen, platy fracture.
7 - 11	Weathered schist	Grey to pink, very fine to fine-grained. Minor Quartzite?, small vugs, lineations.
11 - 14	Quartzite? / Schist	Grey, fine grained, siliceous, weathered, slight to moderate schistosity.
14 - 33	Schist / Quartzite?	Grey to pink, very fine to fine-grained, oxidised $14 - 19$ m, $24 - 25$ m (pink), quartz veining $25 - 26$ m.
33 - 76	Shale	Dark grey to black, very fine to fine-grained, lineations, micaceous sheen, platy, graphitic, slightly more massive $38 - 40 \text{ m}$, $44 - 46 \text{ m}$, $48 - 50 \text{ m}$, $51 - 52 \text{m}$, red oxidation $38 - 39 \text{ m}$, $46 - 48 \text{ m}$, $55 - 56 \text{ m}$, $64 - 65 \text{ m}$. fresher from ~60 m.
76	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit					
Hole No:	TMB3					
Location:	Site C, Down-	C, Down-dip on high wall				
MGA Co-ordinates:	241 687 mE, 6 261 402 mN					
Status:	Monitoring Bo	re				
Date Commenced:	7/1/04 Date Completed: 8/1/04					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	160 m					
Drilling Details:	ils: $0-3 \text{ m } 200 \text{ mm hammer}$ 3-160 m 140 mm hammer					
Casing Details:	0 – 3 m +1.11 – 101 m 101 – 155 m 154 mm steel surface casing 50 mm ND Class 9 uPVC Blank 50 mm ND Class 9 UPVC slotted (0.5 mm aperture)					
Static Water Level:	22.47 m below toc (15/1/04)					

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
70	Trace	-	-	-	-	On rod change
94	Trace	-	-	-	-	On rod change
106	Minor	-	-	-	-	On rod change
112	Minor	-	-	-	-	On rod change
116	Trace	-	-	-	-	Water flow into hole during drilling
118	52	35 500	20.2	26 800	3.8	Black, silty

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
130	65	38 000	22.5	27 300	3.8	Black, silty
136	86	38 200	21.4	28 200	3.8	Black, silty
142	86	40 500	20.5	30 600	3.8	Black, silty
148	121	38 700	22.1	28 100	3.8	Black, silty
154	121	38 200	20.9	28 500	3.8	Black, silty
160	86	37 500	28.8	23 300	4.4	Black, silty

BORE COMPLETION DATA TMB3 (cont.)

Lithology:

Depth (m)	Lithology	Description			
0 - 2	Clay / Highly Weathered schist	Light orange brown, soft, gritty, micaceous sheen, bedrock fragments: light to medium grey, very fine grained, siliceous.			
2 - 11	Weathered schist	Light to dark grey, orange and pink oxidation, platy silicified.			
11 - 35	(Phyllite) Schist	Light to dark grey, slightly to moderately weathered (pink to red oxidation), freshening with depth, very fine grained, platy, siliceous, micaceous sheen, oxidation $14 - 15$ m, $17 - 18$ m, $24 - 26$ m, $30 - 31$, quartz veining $26 - 29$ m.			
35 - 45	Shale	Dark grey to black, very fine grained, micaceous sheen, platy, graphitic, slightly vuggy, some red oxidation, thin quartz veins throughout (high quartz $37 - 45$ m), slightly to moderately silicified.			
45 - 160	Shale	Dark grey to black, very fine grained, micaceous sheen, platy, becoming more massive with depth, graphitic, quartz veining throughout (high quartz $114 - 116m$, $119 - 120 m$, $144 - 145 m$, $150 - 151 m$, $157 - 158 m$), remnant folding ~80 m, broken/vuggy ground ~102 m, pyrite mineralisation from 54 m (increasing $100 - 105 m$, $110 - 111 m$, $114 - 115 m$, $118 - 119 m$, $129 - 130 m$, $139 - 142 m$, $148 - 149 m$).			
160	ЕОН				

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit					
Hole No:	TMB4					
Location:	Site D, In-pit, very wet zone					
MGA Co-ordinates:	241 619 mE, 6 261 441 mN					
Status:	Monitoring Bore					
Date Commenced:	8/1/04 Date Completed: 9/1/04					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	100 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 100 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm steel surface casing+0.36 - 58 m50 mm ND Class 9 uPVC Blank58 - 94 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)					
Static Water Level:	33.59 m below toc (15/1/04)					

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
64	Trace	-	-	-	-	
70	Trace	-	-	-	-	
76	22	18 000	22.7	12 300	5.6	Grey muddy water
82	43	18 000	23.6	12 000	5.3	Grey muddy water
88	35	-	-	-	-	

BORE COMPLETION DATA TMB4(cont.)

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
94	238	34 100	23.6	23 800	3.3	Grey muddy water
100	190	36 700	24.1	25 400	3.5	Grey muddy water

Depth (m)	Lithology	Description
0 - 2	Clay / Highly Weathered schist	Light orange-brown, soft and gritty, bedrock fragments: grey, very fine grained, platy, minor subangular quartz.
2 - 6	Weathered schist	Light to dark grey (minor orange oxidation), very fine grained, platy, micaceous sheen, siliceous, some subangular quartz grains.
6 - 21	(Phyllite) Schist	Light to dark grey, slight to moderate weathering (yellow and red oxidation), very fine grained, platy, siliceous, quartz veins $7 - 10$ m, $11 - 14$ m, $15 - 18$ m, $19 - 21$ m.
21 - 25	Highly Weathered Shale	Greyish-orange, massive, siliceous, quartz rich.
25 - 32	Quartzite? / schist	Grey, fine grained, slightly weathered, platy to massive, siliceous, quartz rich.
32 - 34	Shale / quartz	Dark grey to black, slightly weathered (orange oxidation), fine grained, platy to massive, siliceous, graphitic, quartz veins, traces of Azurite and Malachite.
34 - 100	Shale	Dark grey to black, very fine grained, platy (tending to massive from 54 m), micaceous sheen, graphitic, minor schist (to 40 m- contamination?), slight to moderate weathering (orange and red oxidation) $34 - 42$ m, $44 - 47$ m, $54 - 55$ m, quartz veins $40 - 100$ m, trace Azurite, pyrite mineralisation (increasing from 73 m) $44 - 100$ m.
100	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit					
Hole No:	TMB5					
Location:	Site B, South end of pit, along strike					
MGA Co-ordinates:	241 530 mE, 6	261 309 mN				
Status:	Monitoring Bore					
Date Commenced:	9/1/04	Date Completed: 10/1/04				
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	76 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 76 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm steel surface casing+0.39 - 52 m50 mm ND Class 9 uPVC Blank52 - 76 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)					
Static Water Level:	35.52 m below toc (15/1/04)					

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
45	Trace					After resumption from breakdown
46	-	-	-	-	-	
52	Trace	-	-	-	-	
58	Trace	-	-	-	-	
64	43	16 600	19.6	12 100	4.7	
70	22	22 200	22.3	15 500	4.7	

BORE COMPLETION DATA TMB5 (cont.)

Depth (m)	Lithology	Description
0 - 2	Clay / Highly Weathered schist	Dark grey, soft, gritty, bedrock fragments: orange to brown.
2 - 7	Weathered schist	Grey to orange brown, slightly to highly weathered, very fine grained, platy to massive, minor quartz veining, freshening with increasing depth.
7 - 22	(Phyllite) Schist	Light to dark grey (orange and brown oxidation), slighly to moderately weathered (freshening with increasing depth), platy, micaceous sheen, quartz veining $7 - 13$ m, $17 - 19$ m (quartz rich $11 - 12$ m).
22 - 33	Schist/Shale	Grey to Black (minor orange and red oxidation), very fine grained, soft and platy, schistose, micaceous sheen, slighly siliceous, quartz veining $24 - 27$ m, $28 - 33$ m.
33 - 76	Shale	Black (rare orange weathering throughout contamination?), very fine grained, soft, platy (becoming massive from 54 m), graphitic, micaceous sheen, siliceous, oxidation $40 - 43$ m, increasing hardness from 60 m, quartz rich 57 - 60 m , 61 - 65 m, 67 - 72 m, pyrite mineralisation $43 - 76$ m.
76	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit				
Hole No:	TMB6				
Location:	Site G, Regional bore, near fenceline				
MGA Co-ordinates:	242 267 mE, 6 261 406 mN				
Status:	Monitoring Bore				
Date Commenced:	10/1/04	Date Completed: 10/1/04			
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	82 m				
Drilling Details:	0 – 3 m 200 mm hammer 3 – 82 m 140 mm hammer				
Casing Details:	0 - 3 m154 mm steel surface casing+0.50 - 58 m50 mm ND Class 9 uPVC Blank58 - 82 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)				
Static Water Level:	32.30 m below toc (15/1/04)				

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
64	Water Cut	-	-	-	-	
70	Trace	-	-	-	-	
76	22	30 400	23.4	21 100	6.2	Pale brown, quite clean
82	35	29 800	32.1	16 900	6.2	Pale brown, quite clean

BORE COMPLETION DATA TMB6 (cont.)

Depth (m)	Lithology	Description
0 - 5	Clay / Highly Weathered schist	Pale pinkish orange, soft, gritty, bedrock fragments: orange, red and grey, very fine grained, massive.
5 - 36	(Phyllite) Schist	Pale to dark grey, moderately weathered from $5 - 10 \text{ m}$, 25 - 28 m, 33 - 36 m (orange and red oxidation), very fine grained, platy, micaceous sheen, soft, quartz veining $11 - 14 \text{ m}$, $15 - 24 \text{ m}$ (quartz rich $34 - 35 \text{ m}$).
36 - 82	Shale	Black, very fine grained, platy (more massive from 58 m), micaceous sheen, graphitic, soft, some oxidation (red discolouration), slightly siliceous, quartz veining $42 - 46$ m, $51 - 56$ m, $62 - 82$ m, becoming harder from 60 m, Malachite $65 - 66$ m, $67 - 68$ m, minor pyrite mineralisation $65 - 82$ m, copper? mineralisation $\sim 60 - 82$ m (copper coloured, shiny, like a coating, not crystalline?).
82	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit				
Hole No:	TMB7				
Location:	Site H, Region	al bore, near fenceline			
MGA Co-ordinates:	241 397 mE, 6	260 641 mN			
Status:	Monitoring Bore				
Date Commenced:	10/1/04	Date Completed: 10/1/	04		
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	88 m				
Drilling Details:	0 – 3 m 200 mm hammer 3 – 88 m 140 mm hammer				
Casing Details:	0 - 3 m154 mm steel surface casing+0.44 - 64 m50 mm ND Class 9 uPVC Blank64 - 88 m50 mm ND Class 9 UPVC slotted				
Static Water Level:	27.66 m below toc (15/1/04)				

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
76	Water Cut	-	-	-	-	
82	17	24 300	25.6	15 800	-	Muddy
88	43	36 700	28.3	23 100	6.5	Muddy

BORE COMPLETION DATA TMB7 (cont.)

Depth (m)	Lithology	Description
0 - 5	Clay / Highly Weathered schist	Dark grey to pale pinkish orange, soft, gritty, bedrock fragments: red and brown, very fine grained, massive.
5 - 34	(Phyllite) Schist	Pale to dark grey, slight to moderate weathering (higher from $26 - 29$ m, $33 - 34$ m: orange and red oxidation), very fine grained, platy, micaceous sheen, soft, quartz veining throughout (quartz rich 6 - 7 m), pyrite mineralisation $32 - 33$ m.
34 - 88	Shale	Black, very fine grained, platy, micaceous sheen, graphitic, soft, some oxidation (red discolouration, maybe copper mineralisation?) freshening with increasing depth from 57 m (red oxidation from 77 – 79 m), siliceous, quartz veining $34 - 52$ m, $55 - 88$ m (quartz rich $64 - 65$ m), pyrite mineralisation $78 - 85$ m.
88	ЕОН	

BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit				
Hole No:	TMB8				
Location:	Site E, Region	al bore, near fenceline			
MGA Co-ordinates:	240 877 mE, 6	261 841 mN			
Status:	Monitoring Bore				
Date Commenced:	11/1/04	Date Completed: 11/1/04			
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	76 m				
Drilling Details:	0 – 3 m 200 mm hammer 3 – 76 m 140 mm hammer				
Casing Details:	0 - 3 m154 mm steel surface casing+0.31 - 46 m50 mm ND Class 9 uPVC Blank46 - 76 m50 mm ND Class 9 UPVC slotted				
Static Water Level:	39.61 m below toc (15/1/04)				

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	РН	Comments
46	Water Cut	-	-	-	-	
52	Trace	-	-	-	-	
58	Trace	-	-	-	-	Slight increase in flow
64	Trace	-	-	-	-	Same flow as at 58 m
70	Trace	_	-	-	-	Same flow as at 58 m
76	Trace	27 900	30.2	16 500	6.8	Same flow as at 58 m

BORE COMPLETION DATA TMB8 (cont.)

Depth (m)	Lithology	Description
0 - 3	Clay / Highly Weathered schist	Dark reddish-grey to orange-red, soft, gritty, bedrock fragments: red and brown, very fine grained, massive, some quartz.
3 - 31	(Phyllite) Schist	Pale to medium grey, slight to moderate weathering $12 - 14 \text{ m}$, $17 - 25 \text{ m}$, $28 - 31 \text{ m}$ (orange and red oxidation) freshening with increasing depth, very fine grained, platy, micaceous sheen, siliceous, soft, quartz veining $3 - 8 \text{ m}$, $11 - 16 \text{ m}$.
31 - 76	Shale	Black, very fine grained, platy to massive, micaceous sheen, graphitic, siliceous, hard, some oxidation (red discolouration, maybe copper mineralisation?) freshening with increasing depth $31 - 40$ m, $52 - 54$ m, $62 - 66$ m, $75 - 76$ m, siliceous, quartz veining $33 - 76$ m), pyrite mineralisation $69 - 72$ m, $75 - 76$ m.
76	ЕОН	

PRODUCTION BORE COMPLETION DATA

PRODUCTION BORE COMPLETION DATA

Project:	Tectonic Resources – Trilogy Deposit						
Hole No:	TPB1						
Location:	Site D, In-pit, very wet zone						
MGA Co-ordinates:	~241 619 mE, ~6 261 441 mN						
Status:	Production Bore						
Date Commenced:	21/1/04 Date Completed: 25/1/04						
Drilling Contractor:	Resource Drilling						
Drilling Rig:	Schram T66H						
Depth Drilled:	95.5 m						
Drilling Details:	0 – 6 m 330 mm hammer 3 – 100 m 254 mm hammer						
Casing Details:	+0.1 - 5.9 m254 mm mild steel surface casing+0.2 - 64.8 m152 mm steel, Schedule 40 blank64.8 mAnnular seal - rubber flange64.8 - 94.8 m152 mm steel, Schedule 40 slotted (1.5 mm aperture)(Hole collapsed - 0.7 m lost during casing)						
Static Water Level:	N/D						
Maximum Airlift Yield:	255 m³/day						
Water Salinity:	Approx. 25 000 mg/L TDS (by electrical conductivity)						
Water pH:	3.8						

PRODUCTION BORE COMPLETION DATA (cont.)

Depth (m)	Lithology	Description
0 - 2	Clay / Highly Weathered schist	Light orange-brown, soft and gritty, bedrock fragments: grey, very fine grained, platy, minor subangular quartz.
2 - 21	Weathered schist	Light to dark grey, slight to moderate weathering (yellow and red oxidation), very fine grained, platy, micaceous sheen, siliceous, quartz veins throughout.
21 - 34	Weathered Shale / Quartzite or quartz	Greyish-orange to black, slightly weathered, platy to massive, siliceous, quartz rich, graphitic $32 - 34$ m, traces of Azurite and Malachite at base.
34 - 95.5	Shale	Dark grey to black, very fine grained, platy (tending to massive from 54 m), micaceous sheen, graphitic, slight to moderate weathering (orange and red oxidation) $34 - 55$ m, quartz veins throughout, trace Azurite, pyrite mineralisation traces from 44 m (increasing from ~75 m).
95.5	ЕОН	

WATER QUALITY DATA TPB1

LABORATORY REPORT COVERSHEET

DATE:	20 February 2004
то:	Rockwater Pty Ltd
	PO Box 201
	WEMBLEY WA 6913
ATTENTION:	Ms Miranda Taylor
YOUR REFERENCE:	253.1 Tectonic Resources
OUR REFERENCE:	78274
SAMPLES RECEIVED:	02/02/04
SAMPLES/QUANTITY:	1 Water

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

JANICE VENNING Manager, Perth

PETER BAMFORD Manager Laboratory Services

This report supersedes our preliminary results that were reported by facsimile. This report must not be reproduced except in full.

Page 1 of 3

 SGS Australia Pty Ltd
 Environmental Services
 52 Murray Road, Welshpool
 6106
 Western Australia
 www.sgs.com

 ABN 44 000 964 278
 t + 61 (0)8 9458 7278
 f + 61 (0)8 9451 3505
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f
 f

OUR REFERENCE: 78274

LABORATORY REPORT

	Your Reference	Units	TP B1
	Our Reference		78274-1
	Date Sampled		30/01/2004
	Type of Sample		Water
	pH	pH Units	2.8
	Electrical Conductivity @ 25°C	µS/cm	25000
	Total Dissolved Solids (grav) @ 180°C	mg/L	18000
(Iron, Fe (soluble)	mg/L	96
	Sodium, Na	mg/L	4800
ĺ	Potassium, K	mg/L	120
	Calcium, Ca	mg/L	54
	Magnesium, Mg	mg/L	510
	Chloride, Cl	mg/L	8800
	Carbonate, CO3	mg/L	<1
	Bicarbonate, HCO3	mg/L	<5
	Sulphate, SO4	mg/L	3900
	Nitrate, NO3	mg/L	0.5
	Sum of Ions (calc.)	mg/L	18179

OUR REFERENCE: 78274

TEST PARAMETERS	UNITS	LOR	METHOD
Standard 1			
pH	pH Units	0.1	PEI-001
Electrical Conductivity @ 25°C	μS/cm	1	PEI-032
Total Dissolved Solids (grav) @ 180°C	mg/L	10	PEI-002
Iron, Fe (soluble)	mg/L	0.05	PEM-001
Sodium, Na	mg/L	0.5	PEM-001
Potassium, K	mg/L	0.5	PEM-001
Calcium, Ca	mg/L	0.5	PEM-002
Magnesium, Mg	mg/L	0.5	PEM-002
Chloride, Cl	mg/L	1	PEI-020
Carbonate, CO3	mg/L	1	PEI-006
Bicarbonate, HCO3	mg/L	5	PEI-006
Sulphate, SO4	mg/L	1	PEI-020
Nitrate, NO3	mg/L	0.2	PEI-020
Sum of Ions (calc.)	mg/L		Calc.
	Standard 1pHElectrical Conductivity @ 25°CTotal Dissolved Solids (grav) @ 180°CIron, Fe (soluble)Sodium, NaPotassium, KCalcium, CaMagnesium, MgChloride, ClCarbonate, CO3Bicarbonate, HCO3Sulphate, SO4Nitrate, NO3	Standard 1pHpH UnitsElectrical Conductivity @ 25°CµS/cmTotal Dissolved Solids (grav) @ 180°Cmg/LIron, Fe (soluble)mg/LSodium, Namg/LPotassium, Kmg/LCalcium, Camg/LMagnesium, Mgmg/LChloride, Clmg/LBicarbonate, HCO3mg/LSulphate, SO4mg/LNitrate, NO3mg/L	Standard 1pHpHpH Units0.1Electrical Conductivity @ 25°CμS/cm1Total Dissolved Solids (grav) @ 180°Cmg/L10Iron, Fe (soluble)mg/L0.05Sodium, Namg/L0.5Potassium, Kmg/L0.5Calcium, Camg/L0.5Magnesium, Mgmg/L0.5Chloride, Clmg/L1Bicarbonate, CO3mg/L1Bicarbonate, HCO3mg/L1Nitrate, NO3mg/L0.2

LABORATORY REPORT

NOTES:

LOR - Limit of Reporting.

LABORATORY REPORT COVERSHEET

DATE:	1 April 2004
то:	Rockwater Pty Ltd
	PO Box 201
	WEMBLEY WA 6913
ATTENTION:	Ms Miranda Taylor
YOUR REFERENCE:	253.1 Additional Analysis ex job 78274
OUR REFERENCE:	79525
SAMPLES RECEIVED:	02/02/04
SAMPLES/QUANTITY:	1 Water

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Gold was analysed by SGS Mineral Services, Welshpool, their report No.WM076942.

JANICE VENNING Manager, Perth

PETER BAMFORE Manager Laboratory Services

This report supersedes our preliminary results that were reported by facsimile. This report must not be reproduced except in full.

Page 1 of 2

SGS Australia Pty Ltd | Environmental Services ABN 44 000 964 278

52 Murray Road t +61 (0)8 9458 7278

and the stream

Welshpool 6106 f +61 (0)8 9451 3505

การให้สารสินสินสินสินสินสินสารสารที่ได้ และสินสินสินสาร จ

Western Australia

OUR REFERENCE: 79525

Your Reference Our Reference Date Sampled Type of Sample	Units	TPB 1 79525-1 30/01/2004 Water
Copper, Cu	mg/L	0.15
Nickel, Ni	mg/L	0.45
Zinc, Zn	mg/L	160
Lead, Pb	mg/L	7.7
Cadmium, Cd	mg/L	0.30
Silver, Ag	mg/L	<0.01
Gold, Au	mg/L	<0.001

LABORATORY REPORT

TEST PARAMETERS	UNITS	LOR	METHOD
Copper, Cu	mg/L	0.05	PEM-001
Nickel, Ni	mg/L	0.05	PEM-001
Zinc, Zn	mg/L	0.05	PEM-001
Lead, Pb	mg/L	0.05	PEM-001
Cadmium, Cd	mg/L	0.005	PEM-001
Silver, Ag	mg/L	0.01	PEM-001
Gold, Au	mg/L	0.001	P657

NOTES: LOR - Limit of Reporting.

KUNDIP COPPER & GOLD PROJECT

HYDROGEOLOGICAL INVESTIGATION AND MONITORING BORE COMPLETION REPORT

MARCH 2004

REPORT FOR TECTONIC RESOURCES NL

253.1/04/002

76 Jersey Street Jolimont 6014 Western Australia ABN: 43 008 804 653 Postal: PO Box 201 Wembley 6913 Western Australia Ph: 61 8 9284 0222 Fax: 61 8 9284 1785 Email: consult@rockwater.com.au www.rockwater.com.au

TABLE OF CONTENTS

		PAGE NO.
1	INTRODUCTION	1
2	HYDROGEOLOGICAL SETTING	1
	2.1 CLIMATE	1
	2.2 GEOLOGY	1
3	HYDROGEOLOGY	1
4	TEST-DRILLING	2
5	SUMMARY AND CONCLUSIONS	4
Tal	bles	
Tab	ole 1 – Summary of Kundip Drilling Results	3
Fig	gures	
Fig	ure 1 – Kundip Mining Area Location Map	

- Figure 2 Kundip Mining Area Bore Location Plan
- Figure 3 Kundip Mining Area Groundwater Levels 27 April 2004

Appendices

Appendix I - Kundip Monitoring Bore Completion Data

1 INTRODUCTION

Tectonic Resources is planning to mine the Kundip copper and gold deposit, east of the Ravensthorpe-Hopetoun road, approximately 16 km south of Ravensthorpe (Fig. 1). The Kundip project site encompasses the previously mined Beryl, Harbour View and Flag underground workings. As part of the statutory Notice of Intent (NOI) to mine, a Hydrogeological investigation has been carried out to assess background conditions and likely dewatering requirements.

This report presents the results of the hydrogeological investigation, which included a drilling programme completed in January 2004.

2 HYDROGEOLOGICAL SETTING

2.1 CLIMATE

Ravensthorpe has a Mediterranean-type climate with cool wet winters and warm to hot, dry summers. Average rainfall is 425 mm (508 mm at Hopetoun), and potential evaporation is about 2,000 mm.

2.2 GEOLOGY

The Kundip mining area lies in a region of steeply-dipping mafic to intermediate volcanic rocks of Archaean age (Annabelle Volcanics) with some ultramafic schists (Witt, 1997). The volcanic rocks have been intruded to the west by granitic rocks, also of Archaean age. The upper reaches of the Steere River follows the contact between the granitic and the volcanic rocks.

Immediately south of the Kundip mining area, the Archaean rocks are overlain by the Proterozoic Mount Barren Group, including sediments of the Kundip Quartzite and the Kybulup Schist. The quartzite dips at about 15 degrees to the south-south-west.

3 HYDROGEOLOGY

The Kundip mining area is described as having "minor local aquifers" (Johnson, 1998). The Archaean volcanic rocks are generally of low permeability. Fractures and joints in the rocks, and mineralised zones, can be moderately permeable.

Drainage lines may also follow zones of weakness such as fractures in the underlying rocks.

Page 2

The old mine workings are reported to have intersected water-bearing fractures, and there are significant volumes of water stored in the workings. Anecdotal evidence suggests that Flag is the wettest mine, with inflows possibly in the order of 400 to 500 m³/d; one report (Lea 1989) indicated that "the heavy inflow of water at the face of the No. 3 level east drive had caused the cessation of operations because the existing pumps were totally inadequate to cope with the volume". The Harbour View workings were also reported to be 'wet', and apparently, a large Flygt pump was run continuously during periods of mining in the 1980's to keep them dry. Inflows to Harbour View in 1903 required pumping rates of only 5,000 gallons per day (about 25 m³/d) for a main shaft depth of 160 ft (about 50 m) (Montgomery, 1903). The Beryl workings were said to have yielded moderate amounts of water, which was used as a source for tailings re-treatment. Apart from the Montgomery report, there is no written record of dewatering rates for the Kundip mining area.

The water table is about 37 m deep at the Harbour View workings, in the area where mining is likely to recommence.

Groundwater in the area is generally saline, with salinity ranging from about 20,000 to 40,000 mg/L TDS.

4 TEST-DRILLING

Six sites were selected for exploratory drilling and completion as monitoring bores. Two (KMB1 & KMB4, Fig.2) were planned to intersect the Harbour View mineralised zone. The others were planned as regional exploration holes/monitoring bores and included two sites at the intersection of linear drainages that might follow fracture zones. The latter sites had to be re-located a short distance to prevent damage to vegetation.

The holes were drilled by Resource Drilling using a Schram T66H rig and reverse circulation, down-hole hammer methods. They were drilled at 200 mm diameter to 3 m, and 154 mm diameter steel surface casing was installed before drilling on at 140 mm diameter to total depth. Five of the holes were drilled to 70 m depth and one to 76 m depth. The holes were completed as monitoring bores with 50 mm uPVC casing, slotted over the aquifer interval. The bore annuli were sealed at the surface using Gypset cement.

An existing exploration hole, drilled to 106 m depth, was also cased for groundwater monitoring (Bore KMB7). The results of the drilling are summarised in Table 1, and detailed bore completion reports are presented in Appendix I.

Table 1. Summary of Kundip Drilling Results

Bore	Exploration Site	mE (AMG)	mN (AMG)	Elevation (m AHD)	Depth Drilled (m bgl)	Slotted Interval (m bgl)	Lithology	Static Water Level (m btc)**	Static Water Level (m AHD)	Maximum Airlift Yield (m ³ /d)	Final Salinity (mg/L TDS)*
KMB1	Site F	239975	6269578	158.40	70	52 - 70	Mafic, some Ultramafic minor BIF	36.75	121.65	Trace	N/A
KMB2	Site B	240402	6270011	180.44	76	58 - 76	BIF, Interm. Volcanic Below 38m	58.04	122.40	Dry	N/A
KMB3	Site C	239985	6269062	142.18	70	46 - 70	Ultramafic	21.28	120.90	Trace	N/A
KMB4	Site G	240092	6269758	163.93	76	52 - 76	Mafic, minor porphyry	41.82	122.11	Trace	21,800
KMB5	Site D	239221	6269810	132.85	70	45 - 63	Felsic volcanic, mafic below 48m	4.08	128.77	Dry	N/A
KMB6	Site E	239580	6269319	145.71	70	46 - 70	Mafic, minor porphyry	23.56	122.15	57	37,200
KMB7^	Site A	240162	6268581	143.41	106	76 - 106	Phyllite, Conglomerate, felsic volcanic	25.85	117.56	N/A	N/A

*by electrical conductivity

**below top of surface casing, 23/1/2004

^old exploration, hole cased

Only trace amounts of water were intersected during drilling, with the exception of KMB6, which is situated in a drainage line along-strike of the Harbour View workings: a maximum flow of 60 m^3 /day was measured from this hole. It should be noted that the drilling method (reverse circulation) tends to keep out groundwater, and so airlift flows can be smaller than in larger-diameter holes drilled using direct circulation.

The results show that in general, rocks in the area are of low permeability, even within the Harbour View mineralised zone.

Static water levels measured on 27 April 2004 ranged from 117.74 m AHD in KMB7 to 130.90 m AHD in KMB5, with a hydraulic gradient trending downwards to the south-south-east (Fig. 3). The shape of the water table is somewhat irregular, and does not closely reflect the topography, as would be expected. In particular, the water table between bores KMB1, KMB2, KMB4 and KMB6 has a very low gradient, with less than one metre fall in elevation between KMB2 and KMB6, compared with a 20 m difference in the topography. The low hydraulic gradient in this area may reflect increased permeability at the water table, resulting from mine voids at the water table near the Harbour View workings. The high water level in KMB5 could indicate shallow groundwater perched on a clay layer.

The groundwater had salinity values (by electrical conductivity) between about 22,000 and 38,000 mg/L TDS, and had a near neutral pH of 6.8.

5 SUMMARY AND CONCLUSIONS

Tectonic Resources is planning to mine within the Kundip Mining Area, encompassing the old Harbour View, Flag and Beryl underground workings.

In general, the Archaean volcanic rocks in the area are of low permeability, although previous groundwater inflows to the old workings have been estimated to be up to $500 \text{ m}^3/\text{d}$. Flag was probably the 'wettest' mine, followed by Harbour View and Beryl. Groundwater occurs in localised fractures, most of which are probably associated with mineralised zones. Pumping rates from Harbour View were about 25 m³/d in 1903, when the main shaft was about 50 m deep.

Six groundwater exploration holes were drilled and completed as monitoring bores, and one existing exploration hole was also completed as a monitoring bore. Of the six holes drilled, only four intersected water. Bore KMB6 had a maximum airlift yield of $60 \text{ m}^3/\text{day}$; the other bores (KMB1, 3 and 4) yielded only a trace. The water table slopes downwards to the south-south-east. A low hydraulic gradient in the Harbour View area probably results from open mine voids at the water table.

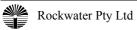
The groundwater has a salinity of about 22,000 mg/L to 38,000 mg/L TDS (by electrical conductivity), and a near-neutral pH.

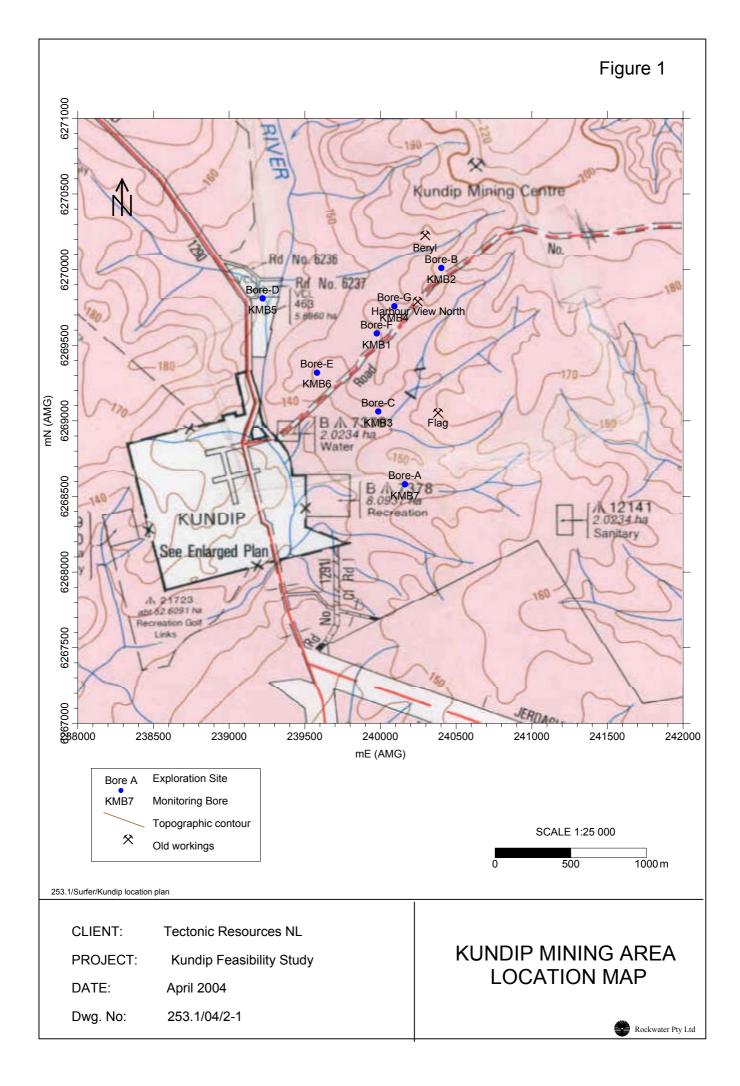
Dewatering can be progressed ahead of mining by installing pumps in existing mine shafts. Pumping rates in the order of 2,000 m³/d could be required for initial dewatering of the old workings; the total volume that will need to be pumped will depend on the volume of mine voids below the water table. Once dewatered, continuing groundwater inflows could be up to 500 m³/d.

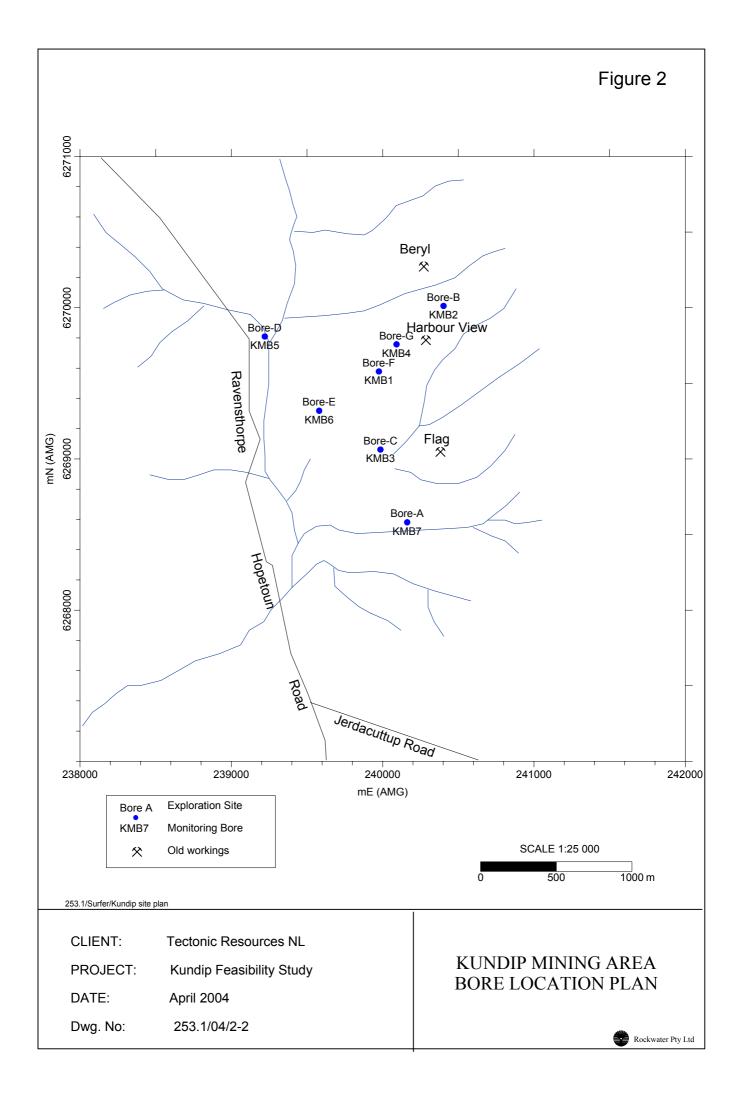
Dated: 29 March 2004

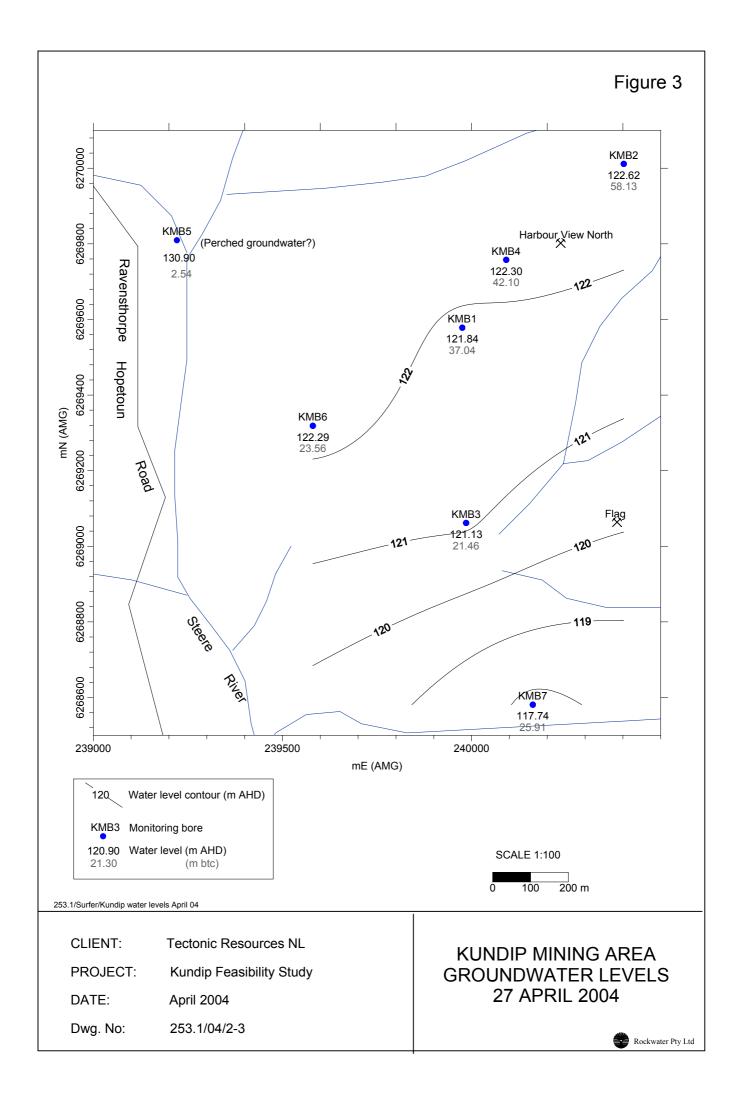
Rockwater Pty Ltd

K J Rattray Senior Environmental Hydrogeologist


P H Wharton Principal Hydrogeologist


REFERENCES


- Johnson, S.L., 1998. Hydrogeology of the Ravensthorpe 1:250 000 sheet: Western Australia, Water and Rivers Commission, Hydrogeological Map Explanatory notes Series, Report HM4.
- Lea, E.J., 1989. Report on Flag Shaft Project. Unpublished report for Norseman Gold Mines NL.


Montgomery, A., 1903. Report on Philips River Goldfield. WA Department of Mines.

Witt, W. K., 1997. Geology of the Ravensthorpe and Cocanarup 1:100 000 Sheets: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes. FIGURES

KUNDIP MONITORING BORE COMPLETION DATA

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit				
Hole No:	KMB1				
Location:	Site F, near he	ad-frame at Harbour View			
MGA Co-ordinates:	240 111 mE, 6	269 724 mN			
AMG Co-ordinates:	239 975 mE, 6	269 578 mN			
Status:	Monitoring Bo	re			
Date Commenced:	12/1/04	Date Completed: 12/1/04			
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	70 m				
Drilling Details:	0 – 3 m 200 mm hammer 3 – 70 m 140 mm hammer				
Casing Details:	0 - 3 m154 mm, steel surface casing+0.48 - 52 m50 mm ND, Class 9 uPVC, blank52 - 70 m50 mm ND, Class 9 uPVC, slotted(0.5 mm aperture)				
Static Water Level:	36.75 m below surface casing (23/1/04)				

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
52	Water Cut	-	-	-	-	
58	Trace	-	-	-	-	
64	Trace	-	-	-	-	
70	Trace	-	-	-	-	No significant flows

MONITORING BORE COMPLETION DATA (KMB1 cont.)

Depth (m)	Lithology	Description
0 - 6	Clay / Highly Weathered bedrock	Dark reddish-grey to orange-red, soft, gritty. Bedrock fragments; red and brown, very fine grained, massive, some quartz.
6 - 27	Basalt	Green, slightly to moderately weathered (cream, orange and red), very fine grained, massive, soft, fine fractures throughout, graphitic $21 - 23$ m, mineralisation $14 - 27$ m.
27 - 29	BIF / Quartz	Red to dark grey, slightly to moderately weathered, very fine grained, hard, massive, slightly vuggy, goethite and hematite.
29 - 49	Ultramafic – Serpentinite?	Dark green, very fine grained with some coarser quartz porphyry, slightly weathered (increasing from $31 - 33$ m, $38 - 49$ m), moderately hard, quartz veining $31 - 32$ m.
49 - 70	Basalt	Dark bluish-green, even-grained mafic, massive, hard, fresh, siliceous, fractured rock \sim 50 – 70 m
70	ЕОН	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit			
Hole No:	KMB2			
Location:	Site B – up gra	adient of Harbour View		
MGA Co-ordinates:	240 546 mE, 6	270 163 mN		
AMG Co-ordinates:	240 402 mE, 6	270 011 mN		
Status:	Monitoring Bo	re		
Date Commenced:	13/1/04	Date Completed: 1	3/1/04	
Drilling Contractor:	Resource Drilling			
Drilling Rig:	Schram T66H			
Depth Drilled:	76 m			
Drilling Details:	0 – 3 m 200 mm hammer 3 – 76 m 140 mm hammer			
Casing Details:	0 - 3 m154 mm, steel surface casing+0.31 - 58 m50 mm ND, Class 9 uPVC, blank58 - 76 m50 mm ND, Class 9 uPVC, slotted(0.5 mm aperture)			
Static Water Level:	58.04 m below surface casing (23/1/04)			

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
64	Water Cut	-	-	-	-	
70	Trace	-	-	-	-	
76	Dry	-	-	-	-	No significant flows

MONITORING BORE COMPLETION DATA (KMB2 cont.)

Depth (m)	Lithology	Description
0 - 1	Clay	Pale orange-brown, soft, gritty.
1 -5	Weathered BIF / Chert / Quartz	Orange, red, cream and greys, massive, hard.
5 - 33	Highly Weathered BIF / Chert	Yellowish orange, very fine grained rock fragments, massive; clay matrix, quartz throughout (quartz rich 13 – 14 m), pyrite mineralisation 28 – 33 m.
33 - 34	Clay	Pale olive, soft, gritty.
34 - 38	Highly Weathered BIF	Brown, very fine grained; clay matrix.
38 - 76	Intermediate Volcanic	Greyish green, very fine grained, massive, siliceous, quartz veining $62 - 65$ m, slight to moderate weathering 38 - 40, oxidised fracture planes $46 - 53$ m, $55 - 65$ m, pyrite mineralisation $73 - 74$ m.
76	ЕОН	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit			
Hole No:	KMB3			
Location:	Site C			
MGA Co-ordinates:	240 130 mE, 6	269 207 mN		
AMG Co-ordinates:	239 985 mE, 6	269 062 mN		
Status:	Monitoring Bo	re		
Date Commenced:	13/1/04	Date Completed: 14/1/04		
Drilling Contractor:	Resource Drilling			
Drilling Rig:	Schram T66H			
Depth Drilled:	70 m			
Drilling Details:	0 – 3 m 200 mm hammer 3 – 70 m 140 mm hammer			
Casing Details:	0 - 3 m154 mm, steel surface casing+0.41 - 46 m50 mm ND, Class 9 uPVC, blank46 - 70 m50 mm ND, Class 9 uPVC, slotted(0.5 mm aperture)			
Static Water Level:	21.28 m below surface casing (23/1/04)			

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
28	Water Cut	-	-	-	-	
34	Trace	-	-	-	-	
40	Trace	-	-	-	-	
46	Trace	-	-	-	-	
52	Trace	-	-	-	-	
58	Trace	-	-	-	-	

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
64	Trace	-	-	-	-	
70	Trace	-	-	-	-	No significant flows

MONITORING BORE COMPLETION DATA (KMB3 cont.)

Depth (m)	Lithology	Description
0 - 1	Quartz Aggregate (intraformational conglomerate?)	Pinkish-red, fine to medium grained, subangular to subrounded grains, clay matrix.
1 - 4	Conglomerate	Dark red, orange, brown, green and greys, BIF, chert, quartz, quartz aggregate (as above), greenstone (mafic?), subangular to subrounded, poorly sorted.
4 - 70	Ultramafic – Serpentinite?	Olive to greyish green, fine-grained, massive, hard, possibly some quartz porphyry in sections, slightly to moderately weathered fracture planes (ferruginised) $7 - 9$ m, $12 - 14$ m, $46 - 47$ m, freshening with increasing depth, pyrite mineralisation $27 - 29$ m, $46 - 56$ m.
70	ЕОН	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit					
Hole No:	KMB4					
Location:	Site G					
MGA Co-ordinates:	240 230 mE, 6	269 901 mN				
AMG Co-ordinates:	240 092 mE, 6	269 758 mN				
Status:	Monitoring Bore					
Date Commenced:	14/1/04 Date Completed: 14/1/0					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	76 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 76 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm, steel surface casing+0.47 - 52 m50 mm ND, Class 9 uPVC, blank52 - 76 m50 mm ND, Class 9 uPVC, slotted(0.5 mm aperture)					
Statia Watar Laval	41.92 m balaw	surface easing $(22/1/04)$				

Static Water Level: 41.82 m below surface casing (23/1/04)

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
58	Water Cut	-	-	-	-	
64	Trace	-	-	-	-	
70	Minor	-	-	-	-	Increase in flow
76	Minor	36 400	30.2	21 800	6.8	Increase in flow

MONITORING BORE DATA COMPLETION DATA (KMB4 cont.)

Depth (m)	Lithology	Description
0 - 1	Clay / Highly Weathered bedrock	Orange-brown, soft, gritty. Bedrock fragments fine- grained, massive, moderate to hard, slightly pitted.
1 - 10	Highly Weathered bedrock	Orange-brown, fine grained, massive, moderate to hard, slightly pitted.
10 - 38	Mafic	Green to olive (some orange and red oxidation), fine grained, slightly to moderately weathered, massive, siliceous, quartz veins $16 - 17$ m, $38 - 40$ m, $44 - 45$ m, freshening from 28 m, minor quartz porphyry from 28 m.
38 - 76	Mafic	Bluish-green, very fine grained, massive, hard, slightly to moderately weathered fracture planes (orange and red) throughout, freshening with increasing depth, quartz veins 38 - 40 m, $44 - 52$ m, $58 - 76$ m, malachite $51 - 52$ m, pyrite mineralisation $58 - 63$ m, $72 - 76$ m, fresh from 58 m (slow drilling).
76	ЕОН	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit				
Hole No:	KMB5				
Location:	Site D				
MGA Co-ordinates:	239 360 mE, 6	269 963 mN			
AMG Co-ordinates:	239 221 mE, 6	269 810 mN			
Status:	Monitoring Bo	re			
Date Commenced:	14/1/04 Date Completed: 15/1/0				
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	70 m				
Drilling Details:	0 – 3 m 200 mm hammer 3 – 70 m 140 mm hammer				
Casing Details:	0 – 3 m +0.59 – 45 m 45 – 63 m (Hole collapsed- 7 m lost during casing)				
Static Water Level:	4.08 m below surface casing (23/1/04)				

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
4	Water Cut	-	-	-	-	Perched aquifer? - Rainwater infiltration from previous week sitting on clay pan below surface
						Dry hole

MONITORING BORE COMPLETION DATA (KMB5 cont.)

Depth (m)	Lithology	Description
0 - 1	Clay	Dark grey-brown, soft, gritty.
1 - 2	Quartz Sand	Brown, fine to medium, minor clay and highly-weathered bedrock granules (orange-brown, fine grained), poorly sorted, alluvial
2 - 3	Colluvium	Orange-brown, minor fine quartz sand, clay and highly- weathered bedrock (orange-brown, fine grained), poorly sorted.
3 - 4	Clay / Highly Weathered bedrock	Yellow, orange, brown and red. Bedrock fragments: fine grained, massive, hard.
4 - 8	Clay / Highly Weathered bedrock	Orange-brown, soft, gritty. Bedrock fragments: fine grained, massive, some well-rounded.
8 - 15	Conglomerate	Pale blue-green rock with orange clay matrix, very fine grained with very well-rounded clasts, moderately hard to hard.
15 - 48	Felsic Volcanic?	Pale bluish-green, very fine to fine grained, massive with minor well rounded clasts, fresh, hard (slow drill rate), quartz veins $32 - 33$ m, minor oxidation (yellow) from $30 - 33$ m.
48 - 70	Mafic	Dark greenish-blue, very fine grained, massive, fresh, hard (slow drilling rate), quartz veins $48 - 70$ m, pyrite mineralisation $62 - 63$ m.
70	EOH	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit					
Hole No:	KMB6					
Location:	Site E					
MGA Co-ordinates:	239 716 mE, 6	269 469 mN				
AMG Co-ordinates:	239 580 mE, 6	269 319 mN				
Status:	Monitoring Bore					
Date Commenced:	Date Completed: 17/1/0					
Drilling Contractor:	Resource Drilling					
Drilling Rig:	Schram T66H					
Depth Drilled:	70 m					
Drilling Details:	0 – 3 m 200 mm hammer 3 – 70 m 140 mm hammer					
Casing Details:	0 - 3 m154 mm, steel surface casing+0.14 - 46 m50 mm ND, Class 9 uPVC, blank46 - 70 m50 mm ND, Class 9 uPVC, slotted(0.5 mm aperture)					
Static Water Level:	23.56 m below surface casing (23/1/04)					

Hydro Data:

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
28	Trace	-	-	-	-	After change of rods
34	Trace	-	-	-	-	After change of rods
40	Trace	-	-	-	-	
46	Trace	-	-	-	-	
52	22	-	-	-	-	
58	57	62 000	18.7	37 200	7.1	Pale brown, sample clean

Depth (m)	Airlift Rate (m ³ /d)	EC (µS/cm)	Temp (°C)	TDS (mg/L)	рН	Comments
64	57	62 200	19.6	37 300	7.1	Pale brown
70	52	62 000	22.2	37 200	7.1	Pale brown

MONITORING BORE COMPLETION DATA (KMB6 cont.)

Depth (m)	Lithology	Description
0 - 4	Clay / Highly Weathered bedrock	Brown, soft. Bedrock fragments: orange, red and brown, fine grained, massive, hard, minor quartz.
4 - 37	Mafic	Greenish grey-blue, very fine grained, some oxidation on fracture faces (orange and brown), massive, hard, quartz porphyry in sections, freshening with depth, quartz veins $20 - 37$ m, pyrite mineralisation $36 - 37$ m.
37 - 42	Mafic	Dark grey, very fine grained, siliceous, massive, hard, fresh, quartz veins $40 - 41$ m, pyrite mineralisation $37 - 42$ m (mineralisation rich $38 - 40$ m).
42 - 46	Mafic	Greenish grey-blue, very fine grained, massive, hard, fresh, quartz porphyry in sections, pyrite mineralisation $42 - 46$ m.
46 - 70	Mafic	Dark greenish-grey, fine to medium grained, massive, siliceous, hard, fresh, quartz porphyry in sections, quartz veins $49 - 51$ m, $67 - 68$ m, minor pyrite throughout.
70	ЕОН	

MONITORING BORE COMPLETION DATA

Project:	Tectonic Resources – Kundip Deposit				
Hole No:	KMB7				
Location:	Site A				
MGA Co-ordinates:	240 301 mE, 6	268 730 mN			
AMG Co-ordinates:	240 162 mE, 6	268 581 mN			
Status:	Monitoring Bore (converted exploration hole, Previously drilled on 28/8/03)				
Date Commenced:	17/1/04 Date Completed: 17/1/04				
Drilling Contractor:	Resource Drilling				
Drilling Rig:	Schram T66H				
Depth Drilled:	106 m				
Drilling Details:	Previously dri	illed hole			
Casing Details:	+0.24 - 76 m50 mm ND Class 9 uPVC Blank76 - 106 m50 mm ND Class 9 UPVC slotted(0.5 mm aperture)				
Static Water Level:	25.85 m below surface casing (23/1/04)				
Hydro Data:	Previously dr	illed hole – no data			
T • /1 • 1					

Depth (m)	Lithology	Description
0 - 54	Weathered Phyllite	Cream, yellow, khaki, grey, brown and light brown, weathered to partially weathered, quartz veins $5 - 8$ m, 11 -13 m, 14 -18 m (rich), 19 -20 m, 23 -24 m, 25 -26 m, 27 -28 m, 29 -30 m, 37 -38 m, 41 -45 m, 46 -47 m, 48 -50 m, 51 -54 m, minor ferrugenisation 19 -20 m, 27 -28 m, highly ferruginous 37 -39 m.
54 - 60	Phyllite	Light to dark grey, green, quartz veins 54 – 56 m, 59 – 60 m.
60 - 64	Phyllite	Light green, quartz veins (rich from $60 - 61$ m).
64 - 71	Dolomite	Light green, red, pink and cream, quartz veins (rich from

		64 – 68 m).
71 - 77	Phyllite / Quartzite	Cream, red and dark green, quartz veins 75 – 77 m.
77 - 99	Conglomerate	Dark red, green, grey and pink.
99 - 106	Intermediate Volcanic	Dark grey and green.
106	EOH	

te as 4	ų	9	00	0	2 0	õ d	0 9	0 0	õ	0	0	0	20	02	0;	0¢	0	02	0	0	0	02	02	0	0		0	0	0;	0	02	20			0	0,	0	00	ç Q	õ d		ç c	2 9	2 0	<u> </u>	0	0	0	0	0	2
s Sulphate SO4	mg/L	2440	2380	2350	24.30	2380	2000	2670	2/80	2910	2990	2960	2850	265	2520	3290	2920	3050	3610	3320	3530	3250	1950	190	2100		2070	2010	222	1900	1880	1750	1870	1970	1990	1770	1490	1930	1990	0561	1960	1930	1940	1770	1940	1930	1500	1440	196	2000)
Nitrate a NH3	mg/l				0000	0.03	GU.U	0.02	0.01	0.04	0.02	0.08	0.04	0.02									0.96	-	0.92		0					1.1	0.6	0.35 1.6	2									0.11	0.48	0.46	0.09	0.1	0.21	0.5	F. >
Nitrate as Nitrate as Sulphate as NO3 NH3 SO4	mg/L	0.45	0.44	0.35	0.40	0.08	0.01	0.01	<0.01	<0.01	<0.01	0.03	0.01	0.03	0.41	0.4	0.37	0.11	<0.01	0.03	0.12	0.13	0.49	0.55	0.56		1.2	с	0.4	0.59	0.52	0.96	0.39	0.00	0.2	0.03	0.01	0.01	0.01	-0.01	<0.01	20.0	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.87	<0.01	->->->
нсоз	mg/L	•	194	598	000	543	212	387	3/2	430	360	525	531	171	4610	302	329	247	388	275	317	268	787	793	790		784	726	629	830	720	763	723	080	695	744	1280	854	8/8	0/71	824 766	203	600 878	769	824	811	1260	1300	720	787 700	00-
c03	mg/L		45	θ (7 0	N Y	2 0	09	99	22	75		27 27	174	42	\$	81	66	50	108	73	102	~2	67 V	<2		64 V	8	67 V		~	~2	8	× 5	I				ç	V q	2 (2 5	9 V	, 0	27 V	۲2 ۲	24 V	64 V	22	8 (ļ
Zn	mg/l	0.01													0.013	0.014	0.009	0.021	0.013	<0.05	0.013	0.032						0.077	0.099						0.057	0.005	0.005	0.005	0.16												
Pb	l/gm	<0.050													<0.005	<0.005	<0.005	<0.005	0.0043	<0.002	<0.002	<0.0010						<0.001	<0.0010						0.05	0.05	0.05	0.05	60.0												
ï	mg/l	1.6													1.1	1.2	1.2	0.97	0.52	,	0.71	1.2	7.4	6.4	5.9			7	8.5			5.4	4.7	11	6.6	0.035	0.045	0.01	0.1												
Na	mg/l	8210												8330	8120	9800	8610	9820	9780	11500	12200	10200						6600	6520						6080	6170	5290	6720	6500												
Mg	mg/l	1270												1350	1440	1540	1430	1570	1830	1710	1790	1590						1000	973						853	757	1030	954	934												
×	mg/l	186												145	114	164	176	171	222	209	187	195						114	115						106	108	110	116	112												
е	mg/l	0.081													1.2	0.11	0.1	0.062	<0.005	<0.05	<0.005	0.078						0.007	0.14						e	0.37	0.38	0.53	0.46												
Cu	mg/l	<.002													0.006	0.007	0.005	0.008	0.034	<0.05	0.007	0.007						<0.005	<0.005						0.007	0.002	0.002	0.002	0.002												
ပိ	mg/l	0.006													0.006	0.005	0.006	<0.005	<0.005	<0.05	<0.005	0.005						0.049							0.061	0.005	0.005	0.005	0.005												
cq	mg/l	<.005													<0.002	<0.002	<0.002	<0.001	<0.002	<0.002	<0.002	<0.001						<0.002	<0.001						0.005	0.005	0.005	0.005	0.005												
Ū	mg/L	•	12000	14600	12000	12000	14000	16000	14000	16000	16300	16000	16000	15000	17000	17000	17000	17000	21000	21800	21000	18000	11000	10300	11000		11000	11000	10000	11000	9600	9700	9600	11000	10000	0066	8600	11000	11000	001.6	11000		11000	9500	11000	9100	8300	8700	11000	11000	>>>
Ca	mg/l	109												120	164	151	148	137	152	166	161	157				288		289	275						188	210	105	314	289												
۵	mg/l	3.5													5.4	9	5.7	5.8	7	6.5	7.3	6.5						4.1	3.5						3.3	3.4	2.9	3.3	3.3												
A	mg/l	0.005													0.043	0.067	0.087	0.045	0.13	<0.05	<0.005	0.025						<0.005	0.025						0.072	0.005	0.005	0.005	0.005												
Hd		8.2	8.4	8.1 0	7.0	0.1 0	20 0 Zi 1	8.5 •	4. 4	8.3	8.2	8.3	8.2	8.4	8.4	8.5	8.5	8.4	8.4				7.8	7.8	80		7.5			7.5	7.7	7.3	7.4	0. / 7 6	7.5	80	7.8	7.5	0.7	0. 1	7 . 7 7	1.1	7.4	7.4	7.2	6.9	6.9	7	7.9	7.5 7.5	2
TDS	mg/l	26000	27000	24000	20000	29000	30000	30000	31000	31000	30000	31000	30000	30000	33000	36000	32000	33000	37000	40000	39000	37000	22000	22000	21000		22000	22000	22000	22000	23000	22000	22000	22000	22000	21000	18000	23000	23000	00081	24000	23000	25000	23000	25000	25000	20000	19000	22000	24000	2200
EC	mS/m	3660	3390	3630	3200	3690			4380	4370	4360	4300	4230		4610	4620	4450	4760						3210	3150	3130	3210				2620			3210 3210					2660		2800			2980	3240	3220	2650	2550	3250	3550 3540	2500
	2																				y-05	1-05						y-05	1-05																						-
Date Sampled		24-Apr-02	21-Jun-02	01-Aug-02		11-Nov-UZ	23-Dec-UZ	29-Jan-03	04-Mar-03	01-May-03	22-May-03	01-Jul-03	30-Jul-03	16-Oct-03	15-Jul-04	12-Aug-04	08-Sep-04	24-Nov-04	16-Feb-05	22-Mar-05	19-May-05	21-Jun-05	01-May-03	22-May-03	01-Jul-03	03-Jul-03	30-Jul-03	19-May-05	21-Jun-05	05-Sep-02	16-Oct-02	08-Nov-02	23-Dec-02	28-Jail-US 04-Mar-03	20-Sep-02	20-Sep-02	20-Sep-02	20-Sep-02	20-Sep-02	10-001-01	16-Uct-U2	16-Oct-02	16-Oct-02	08-Nov-02	08-Nov-02	08-Nov-02	08-Nov-02	08-Nov-02	23-Dec-02	23-Dec-02	101
Type of Sample	Location		-				-	-			lleV	Λ u	Dar		-	-	-	-	-	-	-	-	;	L.Ge	еца	osiC] əı	iΜ	-	ţiq	Ы	du	nuS	ijη		_	pu	nou	erg	pur	<u>-</u>	_	_		_	-	_	-	-		-
Sa	Lo					V	1A0	ΞΞ	Ðγ	/H(018	S S	IJT	ΑN	IE /	NIT	AS													•					ÐN	193	ΤA	EN	ΞΞ	NI	N		_								_

ulphate as SO4	mg/L	2090	1960	1940	1720	1690	1970	1980	1680	2070	1550	1550	01.77	17.10	1600	1500	2110	1680	1540	1910	1790	2000	2150	0061	2400 2020	1900	2460	2210	2080	2400	2380 2300	1930	1890	2030	1650 1550	4520	4150	4020	3310	3650	4180	2730	2530 2530	2700	2600 2670
Nitrate as Nitrate as Sulphate as NO3 NH3 SO4	mg/l	0.54	0.09	0.38	0.07	0.21	0.04	0.24	0.14	0.32	0.13	0.23	0.04	0.21 0	0.28	0.05	0.48	0.13	0.07	0.17		0.35	0.31																		0.1	0.04	0.0	0.02	
Nitrate as NO3	mg/L	<0.01	0.34	0.0	0.02	0.01	0.52	<0.01	<0.01	<0.01	<0.01	<0.01	10.02	<0.01	<0.01	0.03	0.06	0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.27	0.01 0.01	0.03	0.03	0.29	0.01	0.01	0.05 5.8	0.01	0.23	<0.01	0.17	80.0	0.87	1.8	0.49	0.27	5.9	0.21	0.40	0.08	0.09 0.12
нсоз	mg/L	744	619 1250	0001 793	589	1160	622	793	1210	744	1300	1260	1.38	1220	1220	1340	689	1240	1240	1110	1110	1520	755	1040	1070	634	348	705	811	717	181 522	991	799	877	1170	2		653	641	671	689	6/1	702	592	572 683
c03	mg/L	22	99	9 V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	27 V	\$	22	~2	27	9 q	2 5	7		64 V	22	22	27 7	\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	9 q	7	\$	22	~2	\$	0 V	~~ ~	~ ~	~2	22	64 V	80	ų		22	22	64 V	~	N (2 6	<2	8 8 8
Zn	mg/l																							0.24	0.005	<0.005	0.014	<0.02	0.025	0.01	0.15 0.059	0.023	0.008	0.02	0.14	000.07							0.058		0.023 0.042
РЬ	mg/l																							<0.02	<0.02	<0.02	<0.02	<0.02	<0.005	<0.005	<00.005 <0.005	<0.005	0.005	<0.002	0.0028								0.002		<0.005<0.001
ïz	mg/l																							U.24	0.02	0.1	<0.01	8.2	<0.01	0.04	47	0.04	<0.01	0.03	0.17								8.1		2.5 2
Na	mg/l																					6330	6190	NNAG	5620	6540	7330	6050	7330	6630	6030 6860	6220	5730	6700	5580 5430	2010							7560		7910 7990
Mg	mg/l																					11000	1040	ngi l	1100	1020	1190	983	1010	9/8	10/0	981	884	1050	929 010	2							1160		1370 1340
×	mg/l																						115	71.1	102	117	109	111	112	112	114	112	103	121	117	04							131		101 119
Ъе	mg/l																						1000	G00.0	0.007	0.11	2.4	0.1	1.4	1.2	0.22 <0.005	1.1	2.5	0.008	<0.005	000.0-							0.021		<0.005 0.011
Cu	mg/l																							1.70.0	0.008	<0.005	<0.005	0.047	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.016 <0.005	000.07							0.006		<0.005 0.008
co	mg/l																						10,005	GUU.U>	<0.005	<0.005	<0.005	0.047	<0.005	<0.002	0.077	<0.005	<0.005	<0.005	<0.005	00000							0.058		0.069 0.097
Cd	mg/l																						0000	0.080	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002<0.001	<0.001	<0.001	<0.002	<0.001	100.07							<0.002		<0.001<0.001
Ū	mg/L	12000	11000	9000 12000	10000	10000	11000	12000	10000	12000	9600	9600		9000 9460	0670	0006	12000	9800	9300	11000	10000	11000	11200		11000	11000	15000	12000	12000	9750	10000 14000	11000	11000	12000	10000	200101		14000	15000	10000	13000	13000	12000	14000	16000 16000
Ca	mg/l																					300	287	213	171	164	458	231	141	354	399 399	324	231	385	223 158	202							341		113 122
۵	mg/l																						1 0	3.1	3.5	ę	2.1	3.1	5.3	4.1	9.9 4.6	3.7	3.3	3.8	3.5	5							3.5		6.2 7.7
А	mg/l																						1000	GUU.U>	<0.005	<0.005	<0.005	0.007	<0.005	0.053	<0.005 <0.005	0.032	<0.005	<0.005	0.009	0000							0.011		<0.005
Hq		7.4	7.9	7.8	7.7	7.8	7.7	7.6	7.7	7.5	7.9	7.6	4. 7	ο. α	0 00	7.8	7.2	7.7	7.6	7.5	ø	7.5	7.2	0.7	7.2	7.7	7.7	8	7.4	7.1 - 2	9.7 7.3	7.8	7.6	7.5	7.6 7.6	2	7.3	7.1	7	6.8	7.3		7.6	7.9	6.9 7
TDS	mg/l	24000	22000	23000	20000	20000	22000	24000	20000	24000	19000	19000	00000	19000	20000	18000	24000	19000	18000	21000	23000	23000	22000	23000	25000 23000	23000	25000	22000	24000	27000	23000 26000	22000	21000	38000	20000	20000	40000	33000	31000	30000	31000	00082	24000	28000	30000 29000
EC	mS/m	3630	3180	3370	2980	2990	3210	3450	3020	3500	2830	2850	0400	2870	2930	2640	3440	2830	2730	3150	3160	3180	3310 2210	01.00	3990 3320	3310	3910	3300	3430	3600	3370 4340	3320	3220	3540	3100	3650	4280	3960	3740	3120	4130	3950	3650 3650	4010	4920 4270
Date Sampled		23-Dec-02	29-Jan-03	29-Jan-03	29-Jan-03	29-Jan-03	04-Mar-03	04-Mar-03	04-Mar-03	04-Mar-03	04-Mar-03	01-May-03	01-May-03	22-May-U3	22-Mav-03	01-Jul-03	01-Jul-03	01-Jul-03	30-Jul-03	30-Jul-03	09-Oct-03	20-Nov-03	22-Dec-03	40-Jan-01	18-Feb-04 11-Mar-04	21-Apr-04	20-May-04	15-Jun-04	14-Jul-04	12-Aug-04	08-Sep-04 28-Oct-04	24-Nov-04	22-Dec-04	25-Jan-05	16-Feb-05 10-Anr-05	07-Anr-02	07-Apr-02	23-May-02	21-Jun-02	16-Oct-02	25-Nov-02	23-Dec-02	29-Jan-US 06-Oct-04	04-Mar-03	28-Oct-04 16-Feb-05
Type of Sample	Location																													þ	ouno.	ອເດີເ	pur	١				c	lun	Su	Dan			ver	woT fn
Ϋ́Υ Υ	Ľ																		Ð	NIS	IIT	٩W	DE	ЗN	IIM														Ν	IJГ	IT3	4 39	PAG	338	3

Nitrate as Sulphate as	s04 ma/L	2690 2770	2610	2730	00/2	0610	3570	2760	2480	2590	2550	2500	2640	3150	2650	2610	3080	2570	2600	2790	3020	2780		2460	2620	2580	2570	2580	2790	2930 3750	00 10	2960	2980	2470	2510	2520	2790	3010	01 70	2900	3110	2570	2110	2430	
Nitrate as	ma/l	0	0.01	0.01								<0.01	<0.01		<0.01	<0.01								0.00	0.02	0.03	0.07	0.08	<0.01			<0.01	0.03									0.19	<0.01		
as	ma/L	0.12	0.09	0.03	0.04	0.02	0.01	<0.01	0.25	0.15	0.2	0.14	0.09	0.01	0.04	0.04	0.08	0.04	0.05	0.05	0.09	0.08	90.0	0.10	0.07	0.06	0.09	0.01	0.03	0.11 0.08	000	0.05	0.08	0.01	<0.01	<0.01	<0.01	0 0	10.02	0.03	0.02	<0.01	<0.01	<0.01	
HCO3	ma/L	616 647	677	613	647	000 485	464	451	750	732	702	702	677	409	668	747	714	4230	560	552	555	573	200	787	738	747	756	735	641	634 616	20	653	634	698	647	708	644	677	100	043 100	744	641	1070	656	
CO3	ma/L	5 7 7	1 Ç	8	2 4	2 5	i 0	1 64	22		~ ~	20	22	8	<2	22	~ ~	177	22	22	22	42	Ś	? ?	1 0	22	22	24	~2	°N ⊂	>	\$	<2	22	22	8	24	0 ;	y ç	V ç	2 0	42	24	27	
Zn	ma/l	0.022	2	0	<0.02	000.0	<0.05	0.018						0.022			0.008	0.016	0.005	0.013	0.012	0.011	2000	000.04						0.022	0000			0.058	0.006	<0.005	0.008	<0.005	000.0	0.04	0.008			0.12	
Pb	ma/l	0.002 <0.001		0	<0.02	200.02	<0.007	0.003						<0.001			<0.02	<0.005	<0.005	<0.005	<0.001	<0.0010	10.005	000.04						<0.005	400.0			<0.005	0.0012	0.001	<0.001	<0.001	100.02	<0.02	<0.001			<0.02	
ïz	ma/l	С.) i	0	0.09	0.12	2 '	0.16						0.21			0.15	0.09	0.1	0.15	0.15	0.13	5							0.99 0.18	2			0.58	0.02		0.01	0.01		0.15	0.11			0.1	
Na	ma/l	8370 9870	0.00		0987	029U 8280	8610	9180						9680			8670	8090	7830	8600	9860	8610	0702	1 340						8660 98.20	00400			7190	7840	8170	9220	8850	0410 4010	1850	9340 9340	8260	7170	7690	
Mg	ma/l	1390 1510	2		1460	1380 1380	1430	1480						1660			1520	1480	1420	1440	1620	1480	1500	0001						1510 2060	0004			1370	1320	1400	1560	1600	1020	1430	0761	1510	1320	1440	
¥	ma/l	115 110	2		116	120	139	131						152			80.1	117	114	110	115	123	105	001						75.6 85	8			121	140	140	133	142	201	971	130 165		134	117	
Fe	ma/l	0.013	2		1.8	- 1	<0.05	0.39						1.7			0.026	2.5	<0.005	2.3	<0.005	0.66	010	0.13						0.009	440.0			0.007	0.022	0.069	0.005	0.78	07.0	Z. L	0.36			0.051	
Cu	ma/l	<0.005	0000		<0.00 200 01	200.02	<0.05	0.018						<0.005			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	20002	000.02						<0.005	200			0.014	<0.005	<0.005	<0.005	<0.005	100.02	CUU.U>	0.00 0.009			0.016	
ပိ	ma/l	0.094			<0.00>	0.012	<0.05	0.015						0.016			<0.005	<0.005	<0.005	0.006	0.006	0.005	200.07	000.04						0.001	0000			0.01	<0.005	<0.005	<0.005	<0.005	con.o.	1.0.0	0.009 0.009			0.01	
Cd	ma/l	<0.002	4000	000	<0.002	<0.002	<0.002	<0.002						0.001			<0.002	<0.002	<0.001	<0.001	<0.002	<0.001		200.02						<0.002	- 00.07			<0.001	<0.001	<0.002	<0.002	<0.001	- 000 01	<0.002	<0.001			<0.002	
Ū	ma/L	15700 16000	14000	15000	16000	15000	16200	17000	14900	13000	11000	13000	13000	15400	34000	14000	16000	15000	16000	16000	18000	15000	16000	14000	14000	14900	15000	15000	14000	17000 18600	0000-	15200	15000	16000	15000	16500	19000	16000	14200	00021	14900	15000	11900	15000	
Ca	ma/l	124 129	2	0	158	11/	108	96.6						106			210	161	167	179	189	174	727	+						248 202	L C L			154	154	148	152	161 6 <i>F</i>	0.0	110	104 6	131	143	120	
۵	ma/l	7.8 8.7	5		9 0	0.1	102	7.2						9.9			6.4	5.5	4.5	5.8	6.7	5.9	c u	0.0						6.6 7 6	2			4.7	9	6.1	6.9	6.5 6.5	0.0	2 C	o.c 9			5	
A	ma/l	<0.005	000		<0.005	500.0>	<0.05	0.096						0.13			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	2000/	000.04						<0.005	200			<0.005	<0.005	<0.005	<0.005	<0.005	0.12	c00.0>	0.12 0.12			0.032	
Hq	,	7.1 7.4	7.2	7	6.9 9	0.0	7	7.1	6.5	6.4	6.7	6.5	6.7	6.9	7.3	7.2	7.1	7.2	6.8	7.5	7.2	7.3	7	t: /	7.6	7.8	6.9	6.8	7.6	7.3		7.2	6.9	6.7	7	7.1	7.3	7.1	1 1	- 1	4.7 7.3	7.1	7	6.7	
TDS	ma/l	30000	27000	29000	30000		31000	30000	25000	27000	29000	29000	28000	29000	28000	28000	31000	30000	30000	30000	32000	31000	00006	00020	27000	27000	29000	28000	28000	32000	0000	29000	29000	30000	28000	30000	30000	30000	20000	00000	29000 29000	28000	24000	25000	
EC	mS/m		3880	4000	4260	4 190 4 180	50		3660	3100	3110	3710	3960		4010	3990	4420	4230	5030	4360			100	3840	3890	4000	4010	4030	4050	4520		4060	4000	4970	4210				1400	4100		3980	1070	4070	
	Date Sampled	19-Apr-05 19-Mav-05	29-Jan-03	30-Jul-03	15-Jun-04	72-Dec-04	22-Mar-05	19-May-05	01-Aug-02	05-Sep-02	16-Oct-02	11-Nov-02	23-Dec-02	10-Aug-05	04-Mar-03	04-Mar-03	20-May-04	15-Jul-04	28-Oct-04	22-Dec-04	19-May-05	21-Jun-05		20-120-03	01-Mav-03	22-May-03	01-Jul-03	30-Jul-03	01-May-03	08-Sep-04 18-1.11-05	0000	22-Mav-03	01-Jul-03	28-Oct-04	16-Feb-05	19-Apr-05	19-May-05	18-Jul-05	co-Sur-oi	ZU-May-04	19-Muay-05	20-Nov-03	22-Dec-03	15-Jan-04	
Type of	Sample	sca						10	ЯN	l.					T			205	ВW	l			NB03 &	٨)4 (B0:	NB(80	MB(74	MB(90	NB(٨			90	9W			10	
ΣL Δ	Loc														1				ЗF	105	9 Y S	NEP	RECO/	GE	Aq	IBS	;		I		1		1											_	

ulphate as SO4	mg/L	2520 2610	2460	2800	2730 3000	2640	3010	2720	2700	2780	2840	01 92	2730	01.77	3070 3260	2160	2290	2040	2110	3240	0407	2210	2440	2170	2510	2490	2370	2470	2570	2410	2800	2/60	3430]	2160	2180	2530	2150	2150	2230	2480	2300	2310 2270	2070	2320	2510
Nitrate as Sulphate as NH3 SO4	mg/l															<0.01	<0.01																		<0.01	<0.01	0.34									
Nitrate as N NO3	mg/L	0.01	0.04	0.44	0.14	0.01	0.06	0.03	0.34	0.21	0.1	0.18	<0.01	1.0.0×	-0.01 	<0.01	<0.01	<0.01	0.01	0.01	10.0	<0.01	<0.01	0.01	0.04	0.04	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-0.01 0.01	<0.01	0.01	0.01	0.03	<0.01	<0.01	0.07	<0.01
нсоз	mg/L	555	612	698	653 628	589	558	567	573	573	543	080	5/3	1.0C	549	1050	984	1010	0	586	1000	1050	1010	1010	869	802	878	848	610	744	598	604 616	010 573		994	1090	648	1.66	1010	988	1010	1010	1060 201	985	329 000	885 885
cO3	mg/L	Ŷ	1 00	24	8 8	1 <u>0</u>	22	20	42	22	09	N Q	N Q	V 0	⊳ °	22 2	24	24	(2 5	? ?	2	1 0	0	24 V	42	42	24	22	\$	8	°, ⊂	⊳ %		22	ç, ,	9 ¢	N V	22	22	42	20	9 ç	8	2 5	2 2
zn	mg/l	<0.005	0.015	0.059	0.01	0.021	0.068	0.028	0.049	0.088	<0.05	0.01	0.08	0.04	0.019			0.11	1	0.85	07070	0.005	<0.005	0.058	0.078	0.047	0.03	0.008	<0.05	<0.005	0.036	0.084	0.033					0.24	0.007	0.052	0.03	<0.005	<0.005	0.027	0.032	0.04
Pb	mg/l	<0.02	<0.005	0.0051	<0.005	<0.005	<0.005	<0.005	<0.002	0.0027	<0.002	0.001	0.001	0.000	0.007 0.007			<0.02	0	<0.02	20.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.001	<0.002	0.003	<0.001	0.0019	<0.001					<0.02	<0.02	<0.02	<0.005	<0.005	<0.005	300.0>	200.0×	c00.02
z	mg/l	6	0.06	0.09	0.06	0.06	0.07	0.07	0.06	0.07	0.07		0.07	0.0	0.16 0.16			0.12	0	6.7.0	2.0	0.03	0.03	0.04	0.07	0.06	0.05	0.04	0.1		0.1	0.11	0.22	0.07				0.37	0.07	0.13	0.09	0.03	0.03	0.06	0.06	0.09
Ra	mg/l	8430	8980	8170	7960 9120	7440	9360	8720	8380	7850	9720	8060	9/80	00001	10400	6980	6980	6460		2400	6020	6710	7320	6180	7830	7930	0669	7080	8650	7750	9320	8690	9440		6540	2000	7870	6310	6910	7230	6700	6730	7310	6380	7440	7700
Mg	mg/l	1410	1510	1530	1520 1700	1460	1660	1530	1470	1510	1680	1430	1610	0561	1950	1300	1360	1250		1460	1330	1300	1280	1250	1530	1480	1320	1390	1620	1420	1690	1560	1980		1340	1320	1480	1240	1310	1350	1340	1330	1380	1240	1340	1440
×	mg/l	107	124	149	133 149	131	157	132	128	160	157	143	146	140	000 164		116	106	000	122	121	114	139	119	120	107	118	148	127	138	114	121	121		130		128	118	128	128	146	130	121	122	140 128	118
Ъе	mg/l	036	0.011	0.02	0.017	<0.005	0.038	0.045	0.008	0.012	<0.05	<00.05 200.0	0.005	0.019	0.011			0.16		0.016	0 0 0	1.0	0.1	<0.005	0.049	0.05	0.009	<0.005	<0.05	0.058	<0.005	0.32	0.02				č	0.1	0.025	0.7	0.038	0.18	0.093	<0.005	CO.U	<0.005
Cu	mg/l	200.02	0.013	0.019	0.013	0.013	0.028	0.018	0.014	0.019	<0.05	0.013	0.041	0.010	0.021			<0.005		0.052	0.03	<0.005	<0.005	0.018	0.07	0.037	0.012	0.005	<0.05	<0.005	0.026	0.034	0.016				1000	GUU.U	<0.005	0.006	0.005	<0.005	<0.005	<0.005	11.0.0	0.013
ပိ	mg/l	0 01 1	0.005	0.007	0.007	<0.005	0.007	0.008	0.009	0.014	<0.05	0.01	0.014	0.01	0.0			0.01		0.21		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.05	0.01	0.019	0.021	0.04				1000	0.031	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	200.02	600.0
Cd	mg/l	<0.00	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.002	<0.001	<0.002	<0.002	<0.002	1.1.00.07	0.002			<0.002		/00.0		<0.002	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	0.002	<0.002	<0.002	<0.001	<0.001					<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	- 00 02	<0.002
ū	mg/L	15000	16000	16000	16000 16000	17000	16000	16000	15000	16000	15000	16900	17000		16500	12000	12700	12000		11000		11000	13000	14000	14000	15000	14000	14000	16000	15100	18000	18000	17200		12000	12000	15100	00001	12000	12000	10500	12000	13000	14000	14000	14000
ca	mg/l	111	122	131	129 156	134	142	139	130	138	174	128	131	130	152 152	140	139	129	000	126	111	137	176	134	138	141	139	151	156	148	159	16/	208 208		146	147	121	133	145	149	149	153	149	151	159 155	130
۵	mg/l	5	5.1	6.1	5.8	4.2	5.4	5.3	5.1	5.3	5.2	5.0 1	5.9 0	0.0 9	6.2			4.2	1	۲.5 م	с. С. Ц	4 0	6.4	3.8	5.4	5.9	4.6	4.9	5.3	5	2.0	6.6 7 6	0.7 7.7					4.1	4.9	4.2	4.9	4.7	4.9 0.7	3.6	4.7 7 0	5.1 5.1
P	mg/l	<0.005	<0.005	0.016	0.012	<0.005	0.043	0.051	0.029	0.07	0.15	c00.0>	0.007	0.013	0.17			0.012		<0.00 0 0 0 0	210.0	<0.005	0.005	<0.005	0.015	0.012	<0.005	0.008	0.07	<0.005	0.005	0.05	0.14					0.006	<0.005	0.028	0.012	<0.005	<0.005	<0.005	0.031	<0.005
Hq		6.7	7.1	6.8	7.4	6.7	7	7.9	7	6.8	7.2	9.0 0	7 12	ر. ۲ د	7.8	7.3	6.9	6.9	0	0.0 v	ν α	0.0	7.1	7	7.6	7.4	7.2	7.2	7.4	7.2	7.6	4.7	0.9 7.1	7.4	6.9	7.2	0.0 0.0	0.0	7.5	7.4	7.5	7.5	7.1	7 6	0.7 8 7	7.5
TDS	mg/l	39000	25000	29000	30000 29000	30000	31000	31000	29000	25000	31000	31000	31000	32000	29000	24000	25000	22000	22000	26000	24000	25000	25000	25000	27000	28000	26000	25000	32000	30000	32000	32000	31000	24000	25000	25000	28000	00092	25000	25000	22000	25000	25000	26000	30000	28000
E	mS/m	4100	4210	4610	4170 4270	5150	4410	4360	4190	4370						3470	984	3540	3550	3320	3870	3590	3700	4260	1010	4110	3730	4010						3510	3500	3490	648	3580 3580	3260	3700	3720	3670	3630	4400 2060	3810 3810	3950
Date Sampled		18-Feb-04 21-Anr-04	15-Jul-04	16-Aug-04	08-Sep-04 28-Oct-04	28-Oct-04	24-Nov-04	22-Dec-04	25-Jan-05	16-Feb-05	22-Mar-05	19-Apr-U5	19-May-05	20-401-1.7	10-Aug-05	20-Nov-03	22-Dec-03	15-Jan-04	18-Feb-04	11-Mar-04	10-Jul-01	08-Sen-04	28-Oct-04	28-Oct-04	24-Nov-04	22-Dec-04	25-Jan-05	16-Feb-05	22-Mar-05	19-Apr-05	19-May-05	50-un-12	10-Aug-05	16-Sep-03	16-Oct-03	20-Nov-03	22-Dec-03	15-Jan-04 18-Feh-04	21-Apr-04	20-May-04	12-Aug-04	08-Sep-04	28-Oct-04	28-Oct-04	24-NOV-U4	25-Jan-05
Type of Sample	Location	amv	١								I	98	IMV	٨										205	am/	N																5	NB0	Ŵ		
F Ø	ĭ																																													

Sulphate as SO4	mg/L	2670 2650	2540	2670	2540	3420 3300	3290	3030	3020	3380 2210	2110	2040	2330	2600	2720	2040	24/0	2930	3040	4240	2940 3320	0000	2830 2830	2750	2720	2930	2830	3000		2640	2750 2620	2360	2710	2630	3380 2600	2520	2390	2380	2480	2660 2660		2340	2290
Nitrate as Nitrate as Nitrate as NO3 NH3 SO4	mg/l						0.11					0.09	1.7	0.08	0.09	0.02			0.62	7.8				0.26	0.05			0.12			0.1						0.06	0.05	0.19	0.79			<0.01
Nitrate as NO3	mg/L	<0.01	<0.01	<0.01	<0.01	0 01	0.02	<0.01	<0.01	0.01	3.4	2.5	1.2	0.22	0.12	0.29	0.40	0.13	0.03	0.1	0.02	0.0	0.03	0.1	<0.01	0.1	- 0	0.12	0.2	0.44	0.08	1.1	0.13	0.13	0.03	0.34	0.04	0.07	0.14	0.02	0.12	0.66	0.2
НСОЗ	mg/L	671	629	622	671	695 659	555	616	663	1020	793	1280	799	537	750	74/	750	067	857	528	875 872	022	891 891	854	744	372	390 06.4	375		433	433	488	397	390	397 1020	958	952	903	927	994 830		927	970 946
cO3	mg/L	Ϋ́	9 V	22	22	0 %	[;] [;]	8	22	~	4 ⁰	24	22	\$	9 q	γç	2 5	7 C	° 2	2	ς,	2	2 0	0	0 V	Ģ	2 5	20		\$	Ϋ́	20	22	8 0	- °	0 V	22	\$	θ (7 V	I	9 q	7 V
z	mg/l	0.029	0.012	0.087	0.41	0.055 0.12	4		<0.005	0.051	000						0.015	0.11			0.094	0.13										0.2	0.1	0.15	0.37								0.15
Pb	mg/l	<0.001	<0.001	0.003	0.022	0.001	500		<0.02	<0.02	10.0						000/	0.001			<0.02	20.02										<0.005	<0.002	<0.001	0.003								<0.02
ïz	mg/l	0.12	0.1	0.15	0.19	0.16	4.0		0.03	0.58	000						C	0.16	5		4.7	17							0.86			0.43	0.72	1 0	0.90						0.69		0.83
Na	mg/l	7660	8300	0006	8170	9970 10100			5550	5830	2000						7000	8760			8170 8220	0770									7660	6870	7970	8400	0976							0000	662U 7100
Mg	mg/l	1510	1530	1670	1510	1960			1420	1220	044						1600	1780			1540	0001									1440	1230	1320	1400	0091							0077	1400 1370
¥	mg/l	142	136	132	140	695 166	8		115	101	2						130	163	2		107										114	101	108	127	<u>в</u> г.							007	106 104
Fe	mg/l	<0.005	0.019	<0.005	0.29	0.047 0.2	4		3.6	0.046	5						11				0.037	17										<0.005	0.74	<0.05	U.48								0.014
Cu	mg/l	0.021	0.01	0.075	0.51	0.041	400.0		<0.005	0.01							1000				0.017	020.0										0.043	0.028	<0.05	0.18								0.047
°	mg/l	0.018			0.021	0.021	200		<0.005	<0.005							1000				0.032													0.09	0.082								0.01
Cq	mg/l	<0.001	<0.002	<0.002	0.001	<0.001			<0.002	<0.002	100.01						0000	<0.001			<0.002	200.02										<0.001	<0.002	<0.001	1.00.0>								<0.002
Ū	mg/L	15000	15500	18000	16500	18600 16700	11000	11000	11000	11000	11900	9600	11000	15000	15000	14000	15000	15300	16000	16000	15000	16400	13000	15000	16000	15000		15000		14000	14000	14000	15000	15800	15400	12000	14000	13000	13000	15000		13000	13000
Ca	mg/l	130	130	121	118	144			122	128	24						115	143			172	741									106	109	111	121	601							007	138 140
۵	mg/l	5.6	5.7	6.4	6.1	7.5	2		2.3	4.4	ţ						2	9 9 1 9			6.5 6.1	t. 5									L	3.7	4.8	4.9	5.C								5.1
A	mg/l	0.005	<0.005	0.019	0.18	0.021 0.18	0		0.006	<0.005	0000						770	0.028			<0.005										100	<0.005	<0.005	<0.05	0.018								0.006
Hd		6.9	- 2	7.2	7.3	7 1	6.6	6.6	6.5	7	6.8	6.9	7	7.2	7.8	- r 	1.1	0.7	2	6.4	6.9 7 9	O	6.6	6.9	7	5.7	0.3	6.7	6.6	6.5	6.3 7	0.5 6.5	6.4	6.5	0.0 6.7	7	6.9	7.6	7.8	7.6	7.5	7.4	8
TDS	mg/l	28000	31000	31000	30000	31000 31000	25000	25000	23000	21000 25000	22000	24000	25000	28000	28000	00020		29000	32000	32000	30000	000000	32000	31000	31000	31000	00015	32000	29000	29000	29000	27000	26000	30000	30000	29000	29000	26000	26000	28000	28000	27000	26000
EC	mS/m	4260					3290	3310	3310	3360 3460	3000	3140	3540	3930	3940	01.95	1070	40/04	4750	4300	4230	1070	4270 3380	4300	4290	3340	0075 1020	4080	4110	4050	3970	4520	3990		3880	3140	3680	3750	3770	2090 4040	3930	3770	3670 3660
Date Sampled		16-Feb-05	19-Apr-05	19-May-05	21-Jun-05	18-Jul-05 10-Aug-05	01-Jul-03	09-Oct-03	15-Jan-04	18-Feb-04 11-Mar-04	07-Aug-02	08-Nov-02	23-Dec-02	04-Mar-03	22-May-03	30-Jul-03	03-Oct-03	2 I-Api-04 18-Jul-05	29-Jan-03	30-Jul-03	11-Mar-04	10-Jul-01	07-Aug-02 16-Oct-02	23-Dec-02	04-Mar-03	05-Sep-02	10-OCI-0Z	03-Jul-03	15-Sep-03	09-Oct-03	16-Oct-03	28-Oct-04	25-Jan-05	22-Mar-05	20-INL-81	16-Oct-02	08-Nov-02	04-Mar-03	01-May-03	03-Jul-03	16-Sep-03	09-Oct-03	16-Oct-03 21-Apr-04
Type of Sample	Location							† 0	am)	M				20	amv	٨			ş	808	MW		608	IME	M				0	١a	MW										١	۱BN	łW
ِ دي ا	Ľ																					Э	808	e e	RIN	OTI	NOI	N															

ulphate as	SO4 ma/L	2370	2570	2470 2540	2490	2510	3000	3650 3930	1250	1220	3190	3770	3610	3530	3490	3000	2560	3880	3810 2500	0800	3600	3730	3530	371	3450	3510 2620	4070	3440	3410	3760	3700	4130		2610	2560		2630	3170	3330	2340	2	2150 220
Nitrate as Nitrate as Sulphate as	NH3 ma/l						:	0.23	-		0.42	17.0								0000	0.06	0.21	1.2		0.58									1.2	0.6					6	1	
Nitrate as	NO3 mg/L	1.4	1.3	2.2	0.34	0.27	0.29	0.45	0.07	0.01	0.14	0.02	0.02	0.03	<0.01	0.06	0.05	2.2	0	- 0	2 7	1.1	-	0.15	0.07	1.5	0.02	0.1	3.3	0.04	u.uz <0.01	<0.01	<0.01	0.01	0.02	0.01	<0.01	0.01	0.01	0.02	<0.01	0.02 0.03
HCO3	ma/L	949	946	961 052	961	891	921	580 625	1140	1210	424 515	586	552	555	534	800 869	830	372	360	929	366	390	360	421	415	000	354 354	397	320	397	381 415	403		\$! m		24	ო	~ ~	203	0	549 549
CO3	ma/L	- ~	~ V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, ç,	20	27	5 V	i çi	<2	٢	2 0	8	8	2 5	2 5	0	<2	ç	y ç	2 0	1 0	42	22	~	Ś	2 0	42	22	9 ç	98	<2		\$	1 0		22	64 V	~ ~	2 5	Ņ	88
Zn	ma/l	0.34	0.18	0.37 0.28	0.054	0.44	0.47		0.23	0.1			0.21	0.23	0.21	0.76	<0.005									01 0	0.058	0.15	0.24	0.072	0.1z 0.14	0.1						0.2	0.12	0.1		0.005 0.005
Pb	ma/l	<0.005	<0.005	<0.005	0.002	0.0051	<0.001		<0.005	0.003			<0.005	<0.005	<0.002	<0.02 <0.005	<0.001										<0.02 <0.02	<0.005	<0.005	<0.002	<0.0025	0.004						0.04	<0.005	CDU.U		<0.005<0.005
ïz	l/am	0.68	0.62	0.63	0	0.5	0.59		ო				26	20	20	0.0	1.2							6.2		Ċ	2.6	3.3	2.4	3.3 1	4.0 13	14						0.77	0.3	0.10		0.02 0.03
Na	ma/l	8090	2090	7520	7960	7830	9110		4850	4910			10500	8920	8820	8440 8440	8070							10200	9230	0000	10100	8630	9240	10500	10100	10500						8810	9240	<i>81</i> 10		8430 6440
Ma	ma/l	1410	1410	1450 1360	1390	1390	1650		848	800			1700	1700	1550	1510	1330							2210	1970	1000	2220	1930	2000	2120	2130	2260						1440	1490	0701		1330 1110
×	ma/l	103	113	111	113	108	117		83.4	87.3			77.8	91.3 22.2	82.8	91 111	110							94	79.3	1 00	1.00	77.4	78.5	86.7	91.0 106	104						44.9	49.1	48.0		113 120
e L	ma/l	0.051	0.045	0.07	0.36	۲	0.081		0.068	0.11			16	9.5	19	<0.00.5	0.095									010	1.7	0.24	0.059	0.15	c0.02	1.2						0.84	0.59	77.0		1.5 0.9
CL	ma/l	0.042	0.019	0.089	0.01	0.058	0.068		0.1	0.008			0.008	0.034	<0.005	0.0690	<0.005									0.050	0.019	0.044	0.1	0.01	cu.u> 0.026	<0.05						0.19	0.16	0.10		<0.005
S	ma/l	0.008	0.01	0.006	0.026	0.023	0.025		0.019	0.072			0.39	0.42	0.34	0.024	<0.005										0.028	0.024	0.032	0.052	0.16 0.16	0.17						0.46	0.46	0.4		<0.005
Cq	ma/l	<0.002	<0.002	<0.001	<0.002	0.0022	0.002		<0.002	<0.002			<0.002	<0.001	<0.002	<0.002	0.0011										<0.002	<0.002	0.001	<0.002	<0.001	0.002						<0.002	<0.002	- 00.02		<0.002<0.001
0	ma/L	14000	14000	14000	14500	15000	12600	13000 14000	9200	8930	18300	15000	18000	17000	16000	16000	16000	19400	18000	10000	18000 18000	19000	17000	18000	18000	0000	21000	17000	18000	20000	20000	18900		14000	14000		13000	17000	18000	13500		15000 12000
ca	ma/l	138	138	128	124	115	125		220	257			465	384	436	104	94.9							53.4	42.2	1	26.9 26.9	38.1	31	23.9	34.9 21.3	19.9						143	155	104		115 122
0		4.7	5.4	5.2 4 R	5.7	5.6	6.2		5.1	4.3			9	6.4	6.1 e	62	5.7									0	0 12	8.8	8.7	0.0 0.0	9.9 11	11						5.5	6.2	4. ע		5.1 4.8
A	ma/l	0.019	0.032	0.047	<0.005	0.048	0.18		<0.005	0.25			0.019	0.012	<0.005	<0.005	<0.005									010	0.02	0.042	0.021	<0.005	cu.u>	0.47						4	14	=		0.008 0.008
На	<u> </u>	7.6	7.6	7.2		7.6	7.4	767		6.9	7.7	6.5	7			0.0		6.3	6.6		6.7	7.2	7	7	6.6	4	6.7	7.4			0.9 7.2	6.9	œ	4	4.3	00	4.5	4.8	4 v V v	0.4 C 0	4.8 4.8	6.4 6.6
TDS	ma/l	29000	27000	26000	29000	27000	26000	28000 28000	19000	18000	35000	35000	35000	33000	26000	33000	29000	36000	37000 38000	20000	36000	36000	33000	36000	35000	32000	39000	33000	34000	32000	40000	33000	25000	28000	27000	33000	29000	32000	34000	25000	11000	28000 24000
EC	mS/m	3890	3940	3880	0401			3820 3850	2670		4810 4660	4720	4700	4700	4460	4280	4240	4810	3870	5/40	4.980 4.980	5280	4620	4920	4690	4800	5390	4620	4800	5160			3690	4000	4140	4640	4260	4500	4610	3530	1730	4040 3660
	Date Sampled	15-Jul-04	08-Sep-04	24-Nov-04 16_Feh-05	19-Apr-05	21-Jun-05	10-Aug-05	04-Mar-03 30-Jul-03	12-Aug-04	19-Apr-05	22-May-03	09-Oct-03	15-Jul-04	24-Nov-04	25-Jan-05	11-Mai-04 12-Aug-04	16-Feb-05	07-Aug-02	05-Sep-02		08-Nov-02 23-Dec-02	29-Jan-03	01-May-03	16-Sep-03	16-Oct-03	18-Feb-04	20-iviay-04 15-Jun-04	08-Sep-04	24-Nov-04	25-Jan-05	21-Jun-05	10-Aug-05	15-Sen-03	23-Dec-02	29-Jan-03	15-Sep-03	09-Oct-03	20-May-04	12-Aug-04	22-Mav-04	15-Sep-03	15-Jul-04 16-Feb-05
Type of	Sample Location							513	amv	٨		418	AME	٨	g	181	NM							g	9181	MW							718MW	١		81	ЯM	M			61	MMB

ulphate as SO4	mg/L	1980	2220	2220		1960	2110	2170	2050	1520	2210	3320	3990	414	496	261	∞
Nitrate as Nitrate as Sulphate as NO3 NH3 SO4	mg/l		0.31	0.02							0.31	0.73	<0.01	0.02	0.06		
Nitrate as NO3	mg/L	0.01	0.47	0.28	0.01	0.22	0.23	0.17	0.15	0.05	0.05	0.01	<0.01	<0.01	0.04	0.21	0.07
нсоз	mg/L	390	1340	1240		1240	1180	1140	1150	415	287	339	311	116	159	104	171
c03	mg/L	<2	<2	24		\$	24	\$	2 2	8	\$	2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	42	2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
Zn	mg/l	0.02					0.024	0.084	0.025							0.006	
Pb	mg/l	<0.001					<0.02	<0.005	0.002							0.0005	
ž	mg/l	0.04					0.52	0.71									
Na	mg/l	6420					6980	6800	6750							183	
Mg	mg/l	1040					1330	1260	1220							46.8	
×	mg/l	93.1					115	112	127							9.9	
Fe	mg/l	з					0.008	1.4	0.005							0.01	
cu	mg/l	<0.005					0.007	0.032	0.008							0.01	
ပိ	mg/l	<0.005					0.009	0.007	0.005							<0.005	
Cd	mg/l	<0.001					<0.002	<0.001	<0.002							<0.002	
Ū	mg/L	0066	13000	12000		0066			11500	1990	12000	10000	26000	1630	2000	270	37
Ca	mg/l	90.9					38.8	42.9	42.9							60.6	
۵	mg/l	4.1					5.8	5.3	5.2							0.4	
R	mg/l	0.091					<0.005	0.2	0.005							0.17	
Hq		7	7.3	7	8	6.9	6.9	7.7	7.1	5.1	7.4	7.6	7.5	8.3	8	7.8	8
TDS	mg/l	23000	25000	24000	7800	27000	24000	23000	24000	5800	26000	36000	46000	3100	4500	910	280
EC	mS/m		3660	3470	1280	3440	3530	3540		733	3760	5520	6080	561	676		50.4
Date Sampled		10-Aug-05	29-Jan-03	30-Jul-03	16-Sep-03	09-Oct-03	21-Apr-04	22-Dec-04	19-Apr-05	21-Jun-02	23-Dec-02	29-Jan-03	04-Mar-03	22-May-03	01-Jul-03	19-Apr-05	16-May-02
Type of Sample	Location				50	an.	IW			21 MAG 2WAG			'W DC	JA		ЭН	DTOCK DAM

KUNDIP COPPER & GOLD PROJECT

IMPACT OF FINAL MINE VOIDS ON GROUNDWATER FLOW SYSTEM

OCTOBER 2005

REPORT FOR TECTONIC RESOURCES LTD

253.1/05/02

76 Jersey Street Jolimont 6014 Western Australia ABN: 43 008 804 653 Postal: PO Box 201 Wembley 6913 Western Australia Ph: 61 8 9284 0222 Fax: 61 8 9284 1785 Email: consult@rockwater.com.au www.rockwater.com.au

TABLE OF CONTENTS

PAGE NO.

1	INTR	CODUCTION	1
2	HYD	ROGEOLOGICAL SETTING	1
	2.1	CLIMATE	1
	2.2	GEOLOGY	1
	2.3	HYDROGEOLOGY	1
3	PLA	NNED MINE PITS	4
	3.1	CHARACTERISTICS OF FINAL VOIDS	4
4	IMPA	ACT OF MINE WORKINGS ON GROUNDWATER FLOW SYSTEM	5
5	CON	CLUSIONS	5

Tables

Table 1 – Summary of Kundip Drilling Results	3
Table 2 – Pit Water Balance with Pond Levels at Static Groundwater Levels	4

Figures

Figure 1 – Locations of Monitoring Bores, Shafts, and Planned Mine Workings, Kundip Figure 2 – Groundwater Levels April 2004, and Planned Levels of Pit Bases

1 INTRODUCTION

Tectonic Resources is planning to mine the Kundip copper and gold deposit, east of the Ravensthorpe-Hopetoun road, approximately 16 km south of Ravensthorpe. The Kundip project site encompasses the previously mined Beryl, Harbour View and Flag underground workings. Several open-cut pits will be mined, and underground workings will extend beneath the old workings.

This report presents an assessment of the impact of the final mine voids on the groundwater flow system, based on historical records and data collected during a groundwater testing and monitoring bore installation programme (Rockwater, 2004).

2 HYDROGEOLOGICAL SETTING

2.1 CLIMATE

Ravensthorpe has a Mediterranean-type climate with cool wet winters and warm to hot, dry summers. Average rainfall is 425 mm (508 mm at Hopetoun), and average pan evaporation is about 2,000 mm. Agricultural dam evaporation rates are lower, averaging about 1,640 mm/a (Luke, Burke and O'Brien, 1988): a similar rate would apply to mine pits.

2.2 GEOLOGY

The Kundip mining area lies in a region of steeply-dipping mafic to intermediate volcanic rocks of Archaean age (Annabelle Volcanics) with some ultramafic schists (Witt, 1997). The volcanic rocks have been intruded to the west by granitic rocks, also of Archaean age. The upper reaches of the Steere River follows the contact between the granitic and the volcanic rocks.

Immediately south of the Kundip mining area, the Archaean rocks are overlain by the Proterozoic Mount Barren Group, including sediments of the Kundip Quartzite and the Kybulup Schist. The quartzite dips at about 15 degrees to the south-south-west.

2.3 HYDROGEOLOGY

The Kundip mining area is described as having "minor local aquifers" (Johnson, 1998). The Archaean volcanic rocks are generally of low permeability. Fractures and joints in the rocks, and mineralised zones, can be moderately permeable.

Drainage lines may follow zones of weakness such as fractures in the underlying rocks.

The old mine workings are reported to have intersected water-bearing fractures, and there are significant volumes of water stored in the workings. Anecdotal evidence suggests that Flag is the wettest mine, with inflows possibly in the order of 400 to 500 m³/d; one report (Lea 1989) indicated that "the heavy inflow of water at the face of the No. 3 level east drive had caused the cessation of operations because the existing pumps were totally inadequate to cope with the volume". The Harbour View workings were also reported to be 'wet', and apparently, a large Flygt pump was run continuously during periods of mining in the 1980's to keep them dry. Inflows to Harbour View in 1903 required pumping rates of only 5,000 gallons per day (about 25 m³/d) for a main shaft depth of 160 ft (about 50 m) (Montgomery, 1903). The Beryl workings were said to have yielded moderate amounts of water (less than 250 m³/d), which were used as a source for tailings re-treatment. Apart from the Montgomery report, there is no written record of dewatering rates for the Kundip mining area.

These inflow rates indicate that even the mineralised zones have relatively low permeability.

Six groundwater exploration/test holes were drilled in the area and were completed as monitoring bores (Rockwater, 2004). Two (KMB1 & KMB4, Fig.1) were planned to intersect the Harbour View mineralised zone. The others were designed as regional exploration holes/monitoring bores and included two sites at the intersection of linear drainages that might follow fracture zones. An existing exploration hole was also cased for groundwater monitoring (Bore KMB7).

The bore details are summarised in Table 1.

Only trace amounts of water were intersected during drilling, with the exception of KMB6, which is situated in a drainage line along-strike of the Harbour View workings: a small flow of 60 m^3 /day was measured from this hole.

The results show that in general, rocks in the area are of low permeability, even within the Harbour View mineralised zone. A very small proportion of the rainfall, probably around 0.1 percent based on the groundwater salinity, infiltrates the ground to recharge the groundwater that seeps slowly through the rocks, eventually discharging to low-lying areas in the south, possibly along Kuliba Creek.

Groundwater in the area is generally saline, with salinity ranging from about 20,000 to 40,000 mg/L TDS. The pH is near neutral at 6.8.

Table 1. Summary of Kundip Drilling Results

Bore	mE (AMG)	mN (AMG)	Elevation (m AHD)	Depth Drilled (m bgl)	Slotted Interval (m bgl)	Lithology	Static Water Level (m btc)**	Static Water Level (m AHD)	Maximum Airlift Yield (m ³ /d)	Final Salinity (mg/L TDS)*
KMB1	239975	6269578	158.40	70	52 - 70	Mafic, some Ultramafic minor BIF	36.75	121.65	Trace	N/A
KMB2	240402	6270011	180.44	76	58 - 76	BIF, Interm. Volcanic Below 38m	58.04	122.40	Dry	N/A
KMB3	239985	6269062	142.18	70	46 - 70	Ultramafic	21.28	120.90	Trace	N/A
KMB4	240092	6269758	163.93	76	52 - 76	Mafic, minor porphyry	41.82	122.11	Trace	21,800
KMB5	239221	6269810	132.85	70	45 - 63	Felsic volcanic, mafic below 48m	4.08	128.77	Dry	N/A
KMB6	239580	6269319	145.71	70	46 - 70	Mafic, minor porphyry	23.56	122.15	57	37,200
KMB7^	240162	6268581	143.41	106	76 - 106	Phyllite, Conglomerate, felsic volcanic	25.85	117.56	N/A	N/A

*by electrical conductivity **below top of surface casing, 23/1/2004

^old exploration, hole cased

Static water levels measured on 27 April 2004 ranged from 117.7 m AHD in KMB7 to 130.9 m AHD in KMB5 and 144.1 m AHD in the Beryl shaft, with a hydraulic gradient trending downwards to the south (Fig. 2). The shape of the water table is somewhat irregular, and does not closely reflect the topography, as would be expected. In particular, the water table between bores KMB1, KMB2, KMB4 and KMB6 has a very low gradient, with less than one metre fall in elevation between KMB2 and KMB6, compared with a 20 m difference in the topography. The low hydraulic gradient in this area may reflect increased permeability resulting from mine voids at the water table near the Harbour View workings.

3 PLANNED MINE PITS

Seven pits are planned at Kundip, four of which (Kaolin, Hillsborough, Maydon, and Flag West) will extend below the water table (Fig. 2). Hillsborough pit will only just be below the water table. The other pits will capture, contain, and allow some rainfall-runoff to infiltrate to the groundwater, probably resulting in local groundwater level rises and lower groundwater salinities. These pits will act as groundwater sources.

3.1 CHARACTERISTICS OF FINAL VOIDS

The characteristics of the final voids that will extend below the water table have been assessed by simple water balances to determine whether they will act as groundwater sinks or throughflow lakes.

It is estimated that about 60 percent of rain falling within the pit perimeters, i.e. 300 mm/a will report to the bases of the pits. Evaporation from the pit ponds would be at a rate similar to that for agricultural dams (1.64 m/a). A water balance for the four pits that will extend below the water table, based on these rates, is given in Table 2. It assumes that the pond levels are at current static groundwater levels.

Pit	Total Pit Area	Pit Area at Initial Groundwater Level		to Groundwater rom Pit
	(m ²)	(m ²)	(m³/a)	(m ³ /d)
Kaolin	85,410	29,500	-22875	-63
Hillsborough	26,550	1,500	5499	15
Maydon	15,930	3,500	-975	-3
Flag West	20,430	7,300	-5872	-16

Table 2: Pit Water Balance with Pond Levels at Static Groundwater Levels

The results show that the water level in Hillsborough pit will rise to slightly above the static groundwater level as on average, input from rainfall will slightly exceed evaporation losses. It will, therefore, be a throughflow lake.

The other three pits will, on average, be minor groundwater sinks. Water levels in the pits will fall to a little below static groundwater levels, until small groundwater inflows (less than 60 m³/d) and evaporation from a reduced pond area balance rainfall accumulation.

4 IMPACT OF MINE WORKINGS ON GROUNDWATER FLOW SYSTEM

Evaporation from the Kaolin, Maydon and Flag West pits will cause a small increase in groundwater salinity in an already saline aquifer. Rainfall accumulation and infiltration to groundwater from the Western Gem, Hillsborough, Flag Central and Try Again pits will introduce fresh or less saline water to the aquifer, and probably result in an overall decrease in groundwater salinity in the area.

Surface, and open underground mine workings (new and existing), will act as local zones of high permeability that will reduce the hydraulic gradient of the water table. The effect of any groundwater level changes would be undetectable more than, say, 500 m down-gradient, because of the low permeability of rocks in the area.

There are no groundwater users or groundwater dependent ecosystems near the Kundip project that could be impacted by the changes described above.

5 CONCLUSIONS

Archaean volcanic rocks in the Kundip area are of low permeability, as shown by flow rates during previous mining in the area, and low flows from groundwater exploration holes. Of six holes drilled at Kundip, only four intersected water with a maximum airlift yield of 60 m^3 /day from bore KMB6.

The groundwater has a salinity of about 22,000 mg/L to 38,000 mg/L TDS, and a near-neutral pH.

Seven pits are planned at Kundip, four of which (Kaolin, Hillsborough, Maydon, and Flag West) will extend below the water table. Hillsborough pit will only just be below the water table. The other pits will capture, contain, and allow some rainfall-runoff to infiltrate to the groundwater, resulting in local groundwater level rises and lower

groundwater salinities. These pits will act as groundwater sources. The Hillsborough pit will also act as a groundwater source and a throughflow lake.

The Kaolin, Maydon and Flag West pits will, on average, be minor groundwater sinks. Water levels in the pits will fall a little below static groundwater levels, until small groundwater inflows (less than 60 m^3/d) and evaporation from reduced pond areas balance rainfall accumulation.

Evaporation from the Kaolin, Maydon and Flag West pits will cause a small increase in groundwater salinity in an already saline aquifer. Rainfall accumulation and infiltration to groundwater from the Western Gem, Hillsborough, Flag Central and Try Again pits will introduce fresh or less saline water to the aquifer, and probably result in an overall decrease in groundwater salinity in the area.

Surface, and open underground mine workings (new and existing), will act as local zones of high permeability that will reduce the hydraulic gradient of the water table. The effect of any groundwater level changes would be undetectable at more than, say, 500 m down-gradient, because of the low permeability of rocks in the area.

There are no groundwater users or groundwater dependent ecosystems near the Kundip project that could be impacted by the changes to the groundwater flow system.

Dated: 12 October 2005

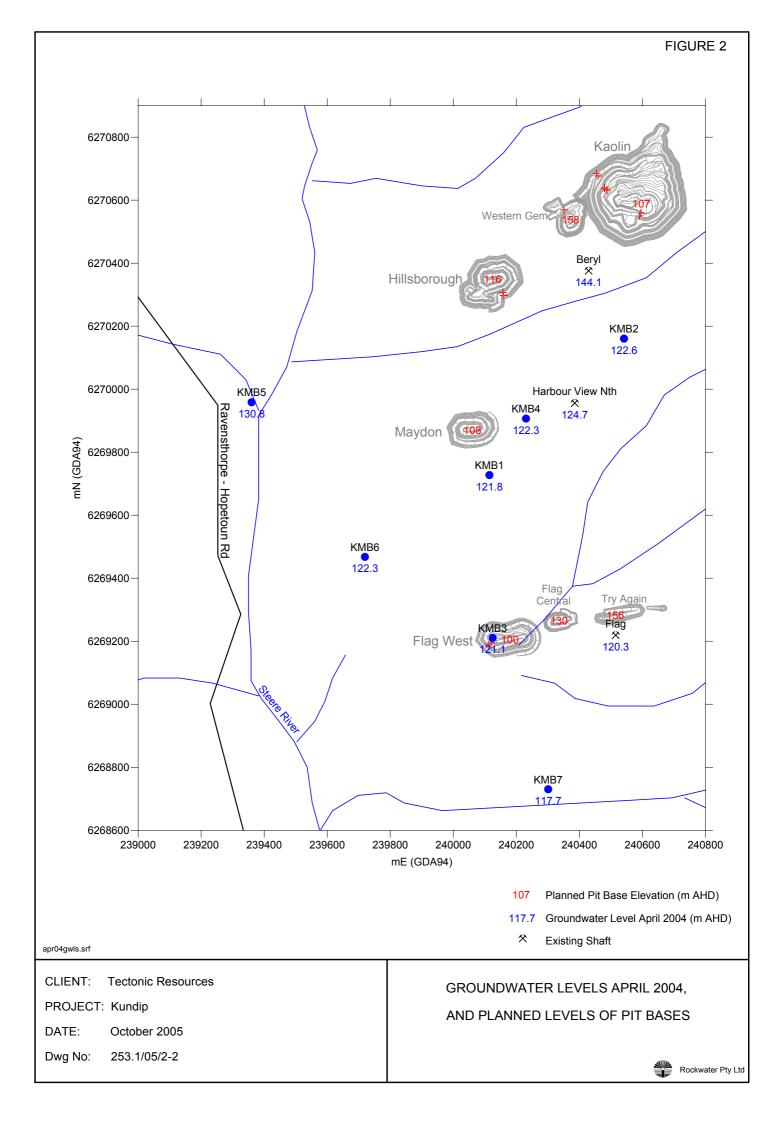
Rockwater Pty Ltd

What

P H Wharton Principal Hydrogeologist

REFERENCES

Johnson, S.L., 1998. Hydrogeology of the Ravensthorpe 1:250 000 sheet: Western Australia, Water and Rivers Commission, Hydrogeological Map Explanatory notes Series, Report HM4. Luke, G.J., Burke, K.L., and O'Brien, T.M., 1988, Evaporation data for Western Australia. Tech. Report No. 65 (2nd Ed), W.A. Dept. of Agriculture.


Montgomery, A., 1903. Report on Philips River Goldfield. WA Department of Mines.

Rockwater, 2004, Kundip copper and gold project, Hydrogeological investigation, and monitoring bore completion report. Unpub. Rept. To Tectonic Resources NL.

Witt, W. K., 1997. Geology of the Ravensthorpe and Cocanarup 1:100 000 Sheets: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes.

FIGURES

