Appendix-4 Assay Reports of Direct Flotation of Kainite-1 Sample without Decomposition

Mining and Minerals Attention: Jack Zhang						15 Inno	C Geor	vd., Saska	toon, Sa	katchew	an, S7N						ort No: G-2017-148	
PO #/Project: 14081 Samples: 10					Tel: (30	06) 933-	8118 Fax:	(306) 93	3-5656 E	mail: geo	olab@src	.sk.ca				Date of I	Report: Aug 11, 201	.7
Samples. 10							Potasl	ICPI T	otal Dige	stion								
Sample	Ag	AI203	Ва	Ве	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe203	Ga	Gd	Hf	
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	
POT003B	<0.2	0.39	11	<0.2	0.94	<1	<1	1	4	<1	<0.2	<0.2	< 0.2	0.22	1	<1	<1	
AF-3-CONC (-0.85)	< 0.2	< 0.01	1	<0.2	0.01	<1	<1	1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
AF-3-TAILS(-0.85)	0.2	< 0.01	3	<0.2	0.02	<1	4	1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
AF-4-C.CONC(-0,425)	<0.2	< 0.01	1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	⊲0.2	< 0.2	< 0.01	<1	<1	<1	
AF-4-C.TAILS(-0.425)	<0.2	0.02	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1	
AF-4-R.TAILS(-0.425)	<0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	< 0.01	<1	<1	<1	
AF-5-C.CONC(-0.106)	< 0.2	< 0.01	1	<0.2	< 0.01	<1	<1	1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
AF-5-C.TAILS(-0.106)	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
AF-5-R.TAILS(-0.106)	<0.2	< 0.01	1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
AF-5-R.TAILS(-0.106) R	0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	< 0.01	<1	<1	<1	
Sample	Ho	K20	La	Li	MgO	MnO	Мо	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
POT003B	<1	19.1	<1	3	2.34	<0.01	<1	30.4	<1	<1	3	<0.01	2	<1	1810	<1	<1	
AF-3-CONC (-0.85)	<1	12.6	<1	<1	13.3	<0.01	<1	13.0	<1	<1	<1	<0.01	1	<1	88700	<1	<1	
AF-3-TAILS(-0.85)	<1	5.25	<1	<1	10.8	<0.01	<1	25.7	<1	<1	<1	<0.01	<1	<1	72400	<1	<1	
AF-4-C.CONC(-0.425)	<1	13.3	<1	<1	13.6	<0.01	<1	11.2	<1	<1	1	<0.01	<1	<1	91500	<1	<1	
AF-4-C.TAILS(-0.425)	<1	7.58	<1	18	10.7	<0.01	<1	23.9	<1	<1	<1	<0.01	1	<1	74800	<1	<1	
AF-4-R.TAILS(-0.425)	<1	3.86	<1	1	11.0	<0.01	<1	25.6	<1	<1	1	<0.01	1	<1	73600	<1	<1	
AF-5-C.CONC(-0.106)	<1	13.2	<1	<1	14.0	<0.01	<1	10.6	<1	<1	<1	<0.01	1	<1	94200	<1	<1	
AF-5-C.TAILS(-0.106)	<1	7.43	<1	1	11.6	<0.01	<1	22.5	<1	<1	<1	<0.01	1	<1	00808	<1	<1	
AF-5-R.TAILS(-0.106)	<1	4.17	<1	<1	9.85	<0.01	<1	28.6	<1	<1	<1	<0.01	1	<1	66500	<1	<1	
AF-5-R.TAILS(-0.106) R	<1	4.21	<1	<1	9.88	<0.01	<1	28.7	<1	<1	1	<0.01	1	<1	67300	<1	<1	
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr					
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
POT003B	<1	22	1	<1	<1	0.02	<2	3	2	<1	0.1	6	3					
AF-3-CONC (-0.85)	<1	2	1	<1	<1	<0.01	<2	<1	<1	<1	< 0.1	<1	13					
AF-3-TAILS(-0.85)	<1	1	1	<1	<1	<0.01	<2	<1	<1	<1	< 0.1	<1	4					
AF-4-C.CONC(-0.425)	<1	2	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	17					
AF-4-C.TAILS(-0.425)	<1	<1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	6					
AF-4-R.TAILS(-0.425)	<1	1	2	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	3					
AF-5-C.CONC(-0.106)	<1	1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	14					
AF-5-C.TAILS(-0.106)	<1	2	1	<1	<1	< 0.01	<2	<1	<1	<1	<0.1	<1	8					
AE-5-R TAIL 9/-0 106)	-1	1	1	-1	-1	e0.01	-2	-1	-1	-1	-01		6					

Appendix-5 Assay Reports of Direct Flotation of Kainite-1 Sample after Decomposition

Mining and Minerals Attention: Jack Zhang					125 -			analytic				2X8				Rep	oort No: G-2017-1538
PO #/Project: 14205					Tel: (3	06) 933-	8118 Fax:	(306) 93	3-5656 E	mail: geo	olab@src	.sk.ca				Date of I	Report: Aug 17, 2017
Samples: 8							Potash	ICPI To	otal Dige	stion							
Sample	Ag	AI203	Ва	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe203	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
POT003B	<0.2	0.39	12	0.3	0.96	<1	1	<1	5	<1	<0.2	<0.2	< 0.2	0.22	1	<1	<1
AF-6-C.CONC	<0.2	< 0.01	<1	<0.2	0.01	<1	<1	<1	3	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
AF-7-C.CONC	< 0.2	< 0.01	<1	<0.2	0.01	<1	<1	<1	<1	<1	< 0.2	< 0.2	< 0.2	< 0.01	<1	<1	<1
AF-6-C.TAIL	<0.2	< 0.01	<1	<0.2	0.01	<1	<1	<1	4	<1	< 0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
AF-7-C.TAIL	<0.2	<0.01	<1	<0.2	0.02	<1	<1	<1	1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
AF-6-R.TAIL	<0.2	<0.01	<1	<0.2	0.01	<1	<1	<1	3	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
AF-7-R.TAIL	<0.2	< 0.01	1	<0.2	0.01	<1	<1	<1	<1	<1	< 0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
AF-7-R.TAIL R	<0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
Sample	Ho	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm
Number	ppm	wt %	ppm	ppm	wt 96	wt %	ppm	Wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
POT003B	<1	19.2	<1	4	2.34	<0.01	1	30.1	<1	<1	3	< 0.01	<1	<1	1860	<1	<1
AF-6-C.CONC	<1	22.9	<1	<1	10.9	<0.01	<1	3.57	<1	<1	1	< 0.01	<1	<1	157000	<1	<1
AF-7-C.CONC	<1	24.3	<1	<1	11.7	<0.01	<1	3.37	<1	<1	<1	< 0.01	<1	<1	166000	<1	<1
AF-6-C.TAIL	<1	15.9	<1	<1	7.65	<0.01	<1	19.4	<1	<1	1	< 0.01	<1	<1	109000	<1	<1
AF-7-C.TAIL	<1	11.3	<1	<1	5.64	<0.01	<1	29.9	<1	<1	1	<0.01	<1	<1	79900	<1	<1
AF-6-R.TAIL	<1	8.24	<1	<1	7.98	<0.01	<1	29.6	<1	<1	1	< 0.01	<1	<1	85700	<1	<1
AF-7-R.TAIL	<1	4.56	<1	<1	7.19	<0.01	4	34.2	<1	<1	<1	< 0.01	<1	<1	63300	<1	<1
AF-7-R.TAIL R	<1	4.55	<1	<1	7.24	<0.01	<1	34.5	<1	<1	1	<0.01	<1	<1	66400	<1	<1
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr				
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
POT003B	<1	22	1	<1	<1	0.03	<2	3	4	<1	0.1	7	3				
AF-6-C.CONC	<1	3	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	1	6				
AF-7-C.CONC	<1	2	1	<1	<1	<0.01	~2	<1	<1	<1	< 0.1	<1	5				
AF-6-C.TAIL	<1	3	<1	<1	<1	<0.01	<2	<1	<1	<1	< 0.1	1	7				
AF-7-C.TAIL	<1	4	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	1	11				
AF-6-R.TAIL	<1	2	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	3				
AF-7-R.TAIL	<1	2	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	5				
AFT DIAM D		2			-4	-0.04	-2	-4	-4	-4	-0.4		=				

Potath Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is POT003B.

Appendix-6 Assay Reports of the Large Direct Flotation of Kainite-1 Sample without Decomposition

Mining and Minerals Attention: Jack Zhang PO #/Project: 14081						15 Inno	RC Geor	vd., Saska	toon, Sas	katchew	an, S7N						oort No: G-2017-1739
Samples: 8					161: (3)	-כבע נטנ					olao@src	.sk.ca				Date of	Report: Sep 15, 2017
							Potash	ICPI To	otal Dige	stion							
Sample	Ag	AI203	Ва	Ве	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe203	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
РОТ003В	<0.2	0.39	12	0.2	0.93	<1	<1	1	5	<1	<0.2	<0.2	<0.2	0.22	1	<1	<1
Ag1-CF-C.C	<0.2	< 0.01	1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	0.01	<1	<1	<1
Ag1-CF-C.T	<0.2	< 0.01	1	<0.2	< 0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
Ag1-CF-R.T	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	< 0.2	<0.2	< 0.2	< 0.01	1	<1	<1
Ag2-CF-C.C	<0.2	0.01	2	<0.2	0.01	<1	<1	<1	<1	<1	0.2	<0.2	<0.2	0.02	<1	<1	<1
Ag2-CF-C.T	<0.2	<0.01	1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	0.01	1	<1	<1
Ag2-CF-R.T	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	1	<1	<1
Ag2-CF-R.T R	<0.2	0.01	1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	0.01	1	<1	<1
Sample	Ho	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
POT003B	<1	19.0	<1	3	2.32	< 0.01	1	30.3	<1	<1	3	<0.01	<1	<1	1790	<1	<1
Ag1-CF-C.C	<1	14.3	<1	<1	15.1	<0.01	<1	10.7	<1	<1	<1	<0.01	<1	<1	106000	<1	<1
Ag1-CF-C.T	<1	6.88	<1	<1	7.87	< 0.01	<1	32.0	<1	<1	<1	<0.01	<1	<1	51900	<1	<1
Ag1-CF-R.T	<1	4.85	<1	<1	7.07	< 0.01	<1	36.0	<1	<1	<1	<0.01	<1	<1	42900	<1	<1
Ag2-CF-C.C	<1	12.8	<1	<1	13.2	<0.01	<1	15.0	<1	<1	<1	<0.01	<1	<1	94700	<1	<1
Ag2-CF-C.T	<1	5.43	<1	<1	6.04	<0.01	<1	37.0	<1	<1	<1	<0.01	<1	<1	39600	<1	<1
Ag2-CF-R.T	<1	2.33	<1	<1	7.24	<0.01	<1	36.8	<1	<1	<1	<0.01	<1	<1	49800	<1	<1
Ag2-CF-R.T R	<1	2.40	<1	<1	7.42	<0.01	<1	37.8	<1	<1	1	<0.01	<1	<1	51400	<1	<1
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr				
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
POT003B	<1	23	<1	<1	<1	0.02	2	3	7	<1	0.1	6	3				
Ag1-CF-C.C	<1	1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	12				
Ag1-CF-C.T	<1	1	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	6				
Ag1-CF-R.T	<1	1	<1	<1	<1	< 0.01	<2	<1	<1	<1	<0.1	<1	4				
Ag2-CF-C.C	<1	3	<1	<1	<1	<0.01	2	<1	<1	<1	<0.1	<1	29				
Ag2-CF-C.T	<1	2	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	1	13				
Ag2-CF-R.T	<1	1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	5				
							-										

Potash Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is POT003B.

Appendix-7 Size by Size Analysis of the Kainite-2 Sample

Mining and Minerals Attention: Jack Zhang					125 -			analytic				2X8				Rep	ort No: G-2017-1671
PO #/Project: 14081 Samples: 9								(306) 93								Date of	Report: Sep 07, 2017
Samples. 9							Potasl	ICPI T	otal Dige	stion							
Sample	Ag	Al203	Ва	Ве	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	W1 %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
POT003B	<0.2	0.38	11	0.2	0.91	<1	4	1	5	<1	<0.2	<0.2	<0.2	0.21	1	<1	<1
Ag-Feed +2.0	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	⊲0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
Ag-Feed +1.0	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	1	<1	<0.2	<0.2	<0.2	< 0.01	<1	<1	<1
Ag-Feed +0.85	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
Ag-Feed +0.425	<0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	<0.01	<1	<1	<1
Ag-Feed +0.212	<0.2	< 0.01	<1	<0.2	0.01	<1	4	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1
Ag-Feed +0.106	< 0.2	0.02	1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	< 0.2	< 0.2	< 0.01	<1	<1	<1
Ag-Feed -0.106	<0.2	< 0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	< 0.2	< 0.2	< 0.01	<1	<1	<1
Ag-Feed -0.106 R	<0.2	<0.01	<1	<0.2	<0.01	<1	4	<1	4	<1	⊲0.2	<0.2	<0.2	<0.01	<1	<1	<1
Sample	Ho	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
POT003B	<1	19.6	<1	3	2.28	<0.01	<1	30.1	<1	<1	2	<0.01	<1	<1	1820	4	<1
Ag-Feed +2.0	<1	3.26	<1	<1	15.9	<0.01	<1	15.8	<1	<1	<1	< 0.01	<1	<1	122000	<1	<1
Ag-Feed +1.0	<1	4.26	<1	<1	15.3	<0.01	<1	16.3	<1	<1	2	< 0.01	<1	<1	122000	<1	<1
Ag-Feed +0.85	<1	4.00	<1	<1	15.1	<0.01	<1	16.1	<1	<1	<1	< 0.01	<1	<1	122000	<1	<1
Ag-Feed +0.425	<1	4.94	<1	<1	14.7	<0.01	4	18.5	<1	<1	1	<0.01	<1	<1	119000	<1	<1
Ag-Feed +0.212	<1	2.22	<1	<1	13.0	<0.01	<1	24.2	<1	4	<1	< 0.01	<1	<1	99000	<1	<1
Ag-Feed +0.106	<1	0.87	<1	2	10.3	<0.01	<1	29.2	<1	<1	<1	< 0.01	<1	<1	74800	<1	<1
Ag-Feed -0.106	<1	4.33	<1	<1	7.50	<0.01	<1	31.8	4	<1	<1	< 0.01	<1	<1	49200	<1	<1
Ag-Feed -0.106 R	<1	4.31	<1	<1	7.A7	<0.01	<1	31.4	4	<1	1	<0.01	1	<1	49200	<1	<1
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr				
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
РОТ003В	<1	22	<1	<1	<1	0.02	<2	3	7	<1	0.1	7	3				
Ag-Feed +2.0	<1	<1	1	<1	<1	<0.01	2	<1	<1	<1	<0.1	<1	1				
Ag-Feed +1.0	<1	1	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	1				
Ag-Feed +0.85	<1	<1	<1	<1	<1	< 0.01	<2	<1	<1	<1	<0.1	<1	<1				
Ag-Feed +0.425	<1	<1	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	1				
Ag-Feed +0.212	<1	<1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	<1				
Ag-Feed +0.106	<1	1	1	<1	<1	< 0.01	<2	<1	2	<1	<0.1	<1	1				
Ag-Feed -0.106	1	1	<1	<1	<1	< 0.01	<2	<1	<1	<1	<0.1	<1	2				
Ag-Feed -0.106 R	<1	1	<1	<1	<1	< 0.01	~2	<1	<1	<1	<0.1	<1	2				

Potash Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HN03/HClO4 until dry and the residue is dissolved in dilute HN03. The standard is POT003B.

Appendix-8 Assay of the Leonite Flotation Test

Mining and Minerals								analytic								Rep	ort No: G-2	017-1886
Attention: Jack Zhang PO #/Project: 14081 Samples: 4								vd., Saska (306) 93								Date of	Report: Sep	27, 2017
Samples. 4							Potash	ICPI To	otal Dige	stion								
Sample	Ag	AI203	Ва	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf	
Number	ppm	wt 96	ppm	ppm	wt 96	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	
РОТ003В	<0.2	0.39	12	0.3	0.92	<1	4	1	5	<1	<0.2	< 0.2	<0.2	0.21	1	<	<1	
Ag-CF-P1-C.C	<0.2	< 0.01	<1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	<0.2	< 0.2	< 0.01	<1	<1	<1	
Ag-CF-P1-C.T	<0.2	< 0.01	<1	<0.2	0.01	<1	<	<1	<1	<1	<0.2	< 0.2	< 0.2	< 0.01	1	<1	<1	
Ag-CF-P1-C.T R	<0.2	< 0.01	<1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	1	<1	<1	
Mining and Minerals Attention: Jack Zhang					125			nalytic				ve				Repo	ort No: G-20	17-1886
PO #/Project: 14081 Samples: 4								(306) 93								Date of I	Report: Sep	27, 2017
•							Potash	ICPI To	tal Dige	stion								
Sample	Но	K20	La	Li	MgO	MnO	Мо	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
РОТООЗВ	<1	19.2	<1	3	2.38	<0.01	1	30.4	<1	<1	3	< 0.01	<1	<1	1870	<1	<1	
Ag-CF-P1-C.C	<1	24.5	<1	<1	7.98	<0.01	<1	14.5	<1	<1	<1	<0.01	<1	<1	89200	<1	<1	
Ag-CF-P1-C.T	<1	2.65	<1	<1	3.47	<0.01	<1	44.0	<1	<1	<1	< 0.01	<1	<1	14400	<1	<1	
Ag-CF-P1-C.TR	<1	2.60	<1	<1	3.49	<0.01	<1	44.0	<1	<1	<1	< 0.01	<1	<1	14400	<1	<1	
Mining and Minerals						SR	C Geo	analytic	al Lab	oratori	es					Rep	ort No: G-2	017-1886
Attention: Jack Zhang					125 -	15 Innov	vation Bh	vd., Saska	toon Sa	katchew	an S7N	2X8						
PO #/Project: 14081 Samples: 4					Tel: (3	06) 933-8	8118 Fax:	(306) 93	3-5656 E	mail: ge	olab@src	:.sk.ca				Date of	Report: Sep	27, 2017
							Potasl	ICPI T	otal Dige	stion								
Sample	Sn	Sr	Та	Tb	Th	TiO2	U, ICP	ν	w	Y	Yb	Zn	Zr					
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
POT003B	<1	22	<1	<1	<1	0.02	3	3	3	<1	0.1	6	3					
Ag-CF-P1-C.C	<1	2	1	4	<1	<0.01	2	<1	<1	<1	<0.1	<1	<1					
Ag-CF-P1-C.T	<1	3	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	<1					
Ag-CF-P1-C.T R	<1	2	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	<1					

Potash Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HC004 until dry and the residue is dissolved in dilute HNO3. The standard is POT003B.

Appendix-9 Assay of Kainite Decomposition Products

Mining and Mineral Attention: Jack Zhang					125.			analytic				288				Rep	ort No: C	-2017-1782
PO #/Project: 14081 Samples: 6								: (306) 93								Date of	Report: S	iep 15, 2017
							Potasi	LICPI T	otal Dige	stion								
Sample	Ag	AI203	Ва	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3		Gd	Hf	
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	
POT003B	<0.2	0.40	12	0.2	0.92	<1	1	<1	5	<1	<0.2	<0.2	<0.2	0.23	1	<1	<1	
DT-FDS	<0.2	< 0.01	1	<0.2	0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	0.01	<1	<1	<1	
DT-TIS DT-T2S	<0.2 <0.2	<0.01 <0.01	<1	<0.2	<0.01 0.01	<1	<1	<1	<1	<1	⊲0.2	<0.2	<0.2	<0.01	<1	<1	<1	
DT-T3S	<0.2	<0.01	1	<0.2	0.01	<1	<1	<1 <1	<1	<1	0.3	<0.2 <0.2	<0.2	<0.01	<1	<1 <1	<1	
D1-130	-U.Z	-0.01		-0.2	0.01	-1	-1	-1	~1	-1	40.2	Q.Z	<0.2	0.02	<1	<1	<1	
DT-T3S R	<0.2	<0.01	1	<0.2	0.01	<1	ব	<1	<1	<1	⊲0.2	<0.2	<0.2	0.02	<1	<1	<1	
Mining and Minerals						SR	C Geo	analytic	al Labo	ratorie	20					Repo	ort No: G	-2017-1782
Attention: Jack Zhang					125 -			d. Saska				270						
PO #/Project: 14081								(306) 93								Date of l	Report: S	ep 15, 2017
Samples: 6							Potach	ICPI To	tal Digg	tion								
							TOTASE	i ici i i	nai Dige	шоп								
Sample	Но	K20	La	Li	MgO	MnO	Мо	Na2O	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
Number	ppm	wt 96	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
РОТООЗВ	<1	19.0	<1	3	2.30	<0.01	<1	30.4	<1	<1	4	<0.01	1	<1	1850	<1	<1	
DT-FDS	<1	13.3	<1	<1	14.0	<0.01	<1	11.1	<1	<1	1	<0.01	1	<1	99200	<1	<1	
DT-TIS	<1	19.8	<1	<1	11.1	<0.01	<1	9.03	<1	<1	1	<0.01	<1	<1	148000	<1	<1	
DT-T2S	<1	17.3	<1	<1	11.9	< 0.01	<1	11.1	<1	<1	1	<0.01	<1	<1	137000	<1	<1	
DT-T3S	<1	16.1	<1	<1	12.9	<0.01	<1	11.1	<1	<1	1	<0.01	<1	<1	123000	<1	<1	
DT-T3S R	<1	16.6	<1	<1	13.1	<0.01	<1	11.4	<1	<1	1	<0.01	<1	<1	126000	<1	<1	
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr					
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
POT003B	<1	23	1	<1	<1	0.02	2	4	4	<1	0.1	8	4					
DT-FDS	<1	2	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	16					
DT-TIS	<1	1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	9					
DT-T2S DT-T3S	<1	3	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	17					
DI-138	<1	3	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	17					
DT-T3S R	<1	3	1	<1	ব	<0.01	<2	<1	<1	<1	<0.1	<1	18					
Sample	Ag	AI203	Ва	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3		Gd	Hf	
Number	ppm	wt %	ppm	ppm	wt 96	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	
POT003B	<0.2	0.38	14	<0.2	0.96	<1	<1	<1	5	<1	<0.2	<0.2	< 0.2	0.22	1	<1	<1	
Ag-DC-30	<0.2	<0.01	1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1	
Sample	Ho	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
Number	ppm	W1 %	ppm	ppm	wt 96	wt %	ppm	wt 95	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
РОТООЗВ	<1	18.9	1	3	2.30	<0.01	1	30.5	<1	<1	2	<0.01	<1	<1	1860	<1	<1	
Ag-DC-30	<1	25.6	<1	<1	11.4	<0.01	<1	0.18	<1	<1	<1	<0.01	<1	<1	163000	<1	<1	

Appendix-10 SOP Conversion Feed by Kainite Decomposition at 40% Solids

Mining and Minerals Attention: Jack Zhang					125 -			analytic				2X8				Repo	ort No: G-2017-1805
PO #/Project: 14081 Samples: 4								(306) 93								Date of I	Report: Sep 15, 2017
Samples, 4							Potash	ICPI To	tal Dige	stion							
Sample Number	Ag	AI2O3 wt %	Ba	Be	CaO wt %	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3 wt %	Ga ppm	Gd ppm	Hf ppm
POT003B	<0.2	0.39	11	0.2	0.90	<1	1	1	4	<1	<0.2	<0.2	<0.2	0.23	1	<1	<1
DT-T4S	<0.2	<0.01	1	<0.2	0.90	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	0.23	<1	<1	<1
DT-T4AS	<0.2	<0.01	1	<0.2	0.02	<1	<1	<1	<1	<1	0.4	<0.2	<0.2	0.01	<1	<1	<1
DT-T4AS R	<0.2	0.01	1	<0.2	0.02	<1	<1	<1	<1	<1	0.4	<0.2	<0.2	<0.01	<1	<1	<1
Mining and Minerals Attention: Jack Zhang					125			analytic				286				Rep	ort No: G-2017-1805
PO #/Project: 14081 Samples: 4							8118 Fax	(306) 93	3-5656 H	mail: ge						Date of	Report: Sep 15, 2017
							Potasl	ICPI T	otal Dige	stion							
Sample Number	Ho	K20 wt %	La	Li	MgO wt %	MnO wt %	Mo	Na20 wt %	Nb	Nd	Ni	P2O5 wt %	Pb	Pr ppm	S	Sc	Sm ppm
POT003B	<1	19.0	<1	3	2.29	<0.01	<1	30.3	<1	<1	3	<0.01	<1	<1	1830	<1	<1
DT-T4S	<1	24.5	<1	<1	11.9	<0.01	<1	1.26	<1	<1	1	< 0.01	1	<1	171000	<1	<1
DT-T4AS	<1	24.1	<1	<1	12.5	< 0.01	<1	1.55	<1	<1	1	<0.01	<1	<1	169000	<1	<1
DT-T4AS R	<1	23.4	<1	<1	12.3	<0.01	<1	1.54	<1	<1	<1	<0.01	<1	<1	166000	<1	<1
Mining and Minerals Attention: Jack Zhang					125 -			nalytic				2XS				Repo	rt No: G-2017-1805
PO #/Project: 14081 Samples: 4							8118 Fax:	(306) 93	3-5656 E	mail: geo						Date of F	Report: Sep 15, 2017
							Potash	ICPI To	tal Dige	stion							
Sample Number	Sn	Sr	Ta ppm	Tb ppm	Th	TiO2	U, ICP	V	W	Y ppm	Yb	Zn	Zr ppm				
РОТООЗВ	<1	23	<1	<1	<1	0.02	~2	3	4	<1	0.1	8	3				
DT-T4S	<1	23	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	<1	19				
DT-T4AS	<1	6	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	1	40				
DT-T449 P	- 4	7	-1	-1	<1	<0.01	-2	<1	-1	<1	<0.1	<1	40				

Potath Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HN03/HClO4 until dry and the residue is dissolved in dilute HN03. The standard is POT003B.

Appendix-11 Assay of SOP Tests at Different Water/Solid Ratios between 1.2 and 1.6

Mining and Minerals Attention: Jack Zhang PO #/Project: 14081						15 Inno	vation Bh	analytic vd., Saska (306) 93	toon, Sas	katchew	an, S7N						ort No: G-20 Report: Sep	
Samples: 5							Potasl	ICP1 T	otal Dige	stion								
Sample	Aq	AI203	Ва	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe203	Ga	Gd	Hf	
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt 96	ppm	ppm	ppm	
POT003B	<0.2	0.44	13	0.4	0.94	<1	1	1	5	1	<0.2	<0.2	<0.2	0.24	1	<1	<1	
AG-SOP1 (1.2)	<0.2	0.03	4	<0.2	0.03	<1	<1	1	2	2	0.6	<0.2	<0.2	0.08	<1	<1	<1	
AG-SOP2 (1.4)	<0.2	0.03	4	<0.2	0.03	<1	1	<1	3	4	0.8	<0.2	<0.2	0.09	<1	4	<1	
AG-SOP3 (1.6)	<0.2	0.02	6	<0.2	0.05	<1	2	<1	7	5	1.4	0.2	<0.2	0.02	<1	<1	<1	
AG-SOP3 (1.6) R	<0.2	0.02	6	<0.2	0.05	<1	2	<1	6	5	1.4	0.2	<0.2	0.02	<1	<1	<1	
Mining and Minerals Attention: Jack Zhang					125 -			analytic				2XS				Repe	ort No: G-20	17-1821
PO #/Project: 14081 Samples: 5							8118 Fax:	(306) 93	3-5656 E	mail: geo						Date of	Report: Sep 2	21, 2017
							Potash	ICPI To	otal Dige	stion								
Sample	Но	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
POT003B	<1	19.0	<1	3	2.35	< 0.01	<1	30.3	<1	<1	4	<0.01	<1	<1	1800	<1	<1	
AG-SOP1 (1.2)	<1	32.1	<1	<1	9.47	< 0.01	<1	0.30	<1	<1	1	<0.01	1	<1	174000	<1	<1	
AG-SOP2 (1.4)	<1	39.0	<1	<1	6.27	<0.01	<1	0.18	<1	<1	2	< 0.01	1	<1	171000	<1	<1	
AG-SOP3 (1.6)	<1	52.4	1	1	1.14	<0.01	<1	0.09	<1	<1	3	<0.01	<1	<1	176000	<1	<1	
AG-SOP3 (1.6) R	<1	53.3	<1	1	1.14	<0.01	<1	0.09	<1	<1	3	<0.01	<1	<1	176000	<1	<1	
Mining and Minerals								nalytic								Rep	ort No: G-20	17-1821
Attention: Jack Zhang								d., Saska										
PO #/Project: 14081 Samples: 5					Tel: (3)	06) 933-8	118 Fax:	(306) 93	3-5656 E	mail: geo	lab@src	.sk.ca				Date of	Report: Sep 2	21, 2017
Jampies. 2							Potash	ICPI To	tal Dige	ition								
Sample	Sn	Sr	Та	Tb	Th	TiO2	U, ICP	v	w	Y	Yb	Zn	Zr					
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
POT003B	<1	23	2	<1	<1	0.02	<2	3	7	<1	0.1	10	3					
AG-SOP1 (1.2)	<1	7	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	5	42					
AG-SOP2 (1.4)	<1	13	1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	8	60					
AG-SOP3 (1.6)	3	25	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	6	98					
AG-SOP3 (1.6) R	3	25	<1	<1	<1	< 0.01	<2	<1	<1	<1	<0.1	5	105					

Potath Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is POT003B.

Appendix-12 Assay of SOP and by-Products at Water/Solid Ratios of 1.55 and 1.60

Mining and Minerals Attention: Jack Zhang PO #/Project: 14081					125 -	15 Inno	vation Bl	analytic	toon, Sas	katchew	an, S7N	2X8					ort No: G-2017-1887
Samples: 6					1el: (5	00) 933-		(306) 93 ICP1 T			olab@src	.sk.ca				Date of	Report: Sep 27, 2017
							Lutasi	ilciii	utai Dige	SHOIL							
Sample	Ag	AI203	Ва	Ве	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe203	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt 96	ppm	ppm	ppm
POT003B	<0.2	0.40	12	0.2	0.93	<1	<1	<1	5	1	<0.2	<0.2	< 0.2	0.21	1	<1	<1
Aq-D(30)-SOP(1.55)	<0.2	< 0.01	1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	< 0.01	<1	<1	<1
Ag-D(30)-Leonite(1.55)	<0.2	0.01	2	<0.2	0.04	<1	<1	<1	4	4	1.4	0.2	< 0.2	< 0.01	<1	<1	<1
Aq-D(40)-SOP(1.6)	<0.2	0.01	8	<0.2	0.09	<1	<1	<1	5	4	0.6	<0.2	< 0.2	0.01	<1	<1	<1
Ag-D(40)-Leonite(1.6)	<0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
Ag-D(40)-Leonite(1.6) R	<0.2	<0.01	<1	<0.2	<0.01	<1	<1	<1	<1	<1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
Sample	Ho	K20	La	Li	MgO	MnO	Mo	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
РОТ003В	<1	19.2	<1	3	2.35	<0.01	<1	30.4	<1	4	3	<0.01	1	<1	1860	<1	<1
Ag-D(30)-SOP(1.55)	<1	26.8	<1	<1	11.5	< 0.01	<1	0.06	<1	<1	1	<0.01	<1	<1	170000	<1	<1
Aq-D(30)-Leonite(1.55)	<1	54.0	<1	3	0.37	<0.01	<1	0.04	4	4	1	<0.01	<1	<1	172000	<1	<1
Ag-D(40)-SOP(1.6)	<1	53.6	<1	3	0.34	<0.01	<1	0.06	<1	4	1	<0.01	<1	<1	172000	<1	<1
Ag-D(40)-Leonite(1.6)	<1	26.7	<1	<1	11.6	<0.01	<1	0.06	<1	<1	<1	<0.01	<1	<1	168000	<1	<1
Ag-D(40)-Leonite(1.6) R	<1	26.7	<1	<1	11.6	<0.01	<1	0.06	<1	<1	<1	<0.01	<1	<1	166000	<1	<1
Sample	Sn	Sr	Ta	Tb	Th	TiO2	U. ICP	V	W	Y	Yb	Zn	Zr				
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
POT003B	<1	22	<1	<1	<1	0.02	2	4	5	<1	0.1	7	3				
Aq-D(30)-SOP(1.55)	<1	<1	<1	<1	<1	<0.01	9	<1	<1	<1	<0.1	<1	1				
Ag-D(30)-Leonite(1,55)	<1	11	<1	<1	<1	<0.01	52	<1	<1	<1	<0.1	5	20				
Aq-D(40)-SOP(1.6)	<1	24	<1	<1	<1	<0.01	11	<1	<1	4	<0.1	6	26				
Ag-D(40)-Leonite(1.6)	<1	<1	<1	<1	<1	<0.01	4	<1	<1	<1	<0.1	<1	1				
An-DMON contact 6) P	<1	<1	<1	<1	-1	<0.01	3	-1	-	-1	en 1	<1	1				

Potash Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is POT003R

Appendix-13 Assay of SOP and by-Products using High Purity Leonite as SOP Feed

Mining and Minerals Attention: Jack Zhang PO #/Project: 14081						- 15 Inno	vation B	analytic lvd., Sask r: (306) 93	atoon, Sa	katchew	an, S7N						oort No: G-201 Report: Nov 29	
Samples: 11							Potas	h ICPl T	otal Dige	stion								
Sample	Но	K20	La	Li	MgO	MnO	Мо	Na20	Nb	Nd	Ni	P205	Pb	Pr		Sc	Sm	
Number	ppm	wt %	ppm	ppm	wt 96	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm		ppm	ppm	
POT003B	<1	19.1	<1	3	2.39	<0.01	<1	30.3	<1	<1	3	<0.01	<1	<1		<1	<1	
Ag-SOP-F	<1	26.0	<1	<1	11.4	<0.01	<1	0.11	<1	<1	2	<0.01	<1	<1		<1	<1	
Ag-LN-1.0	<1	25.7	<1	<1	11.5	<0.01	<1	<0.01	<1	<1	5	<0.01	<1	<1	170000	<1	<1	
Ag-SOP-1.15	<1	52.0	<1	<1	1.22	<0.01	<1	0.01	<1	<1	<1	<0.01	<1	<1	186000	<1	<1	
Ag-LN-1.15	<1	25.3	<1	<1	11.7	<0.01	<1	0.02	<1	<1	5	<0.01	<1	<1	174000	<1	<1	
Mining and Minerals								analytic								Repo	ort No: G-2017	-2372
Attention: Jack Zhang PO #/Project: 14081 Samples: 11								rd., Saska (306) 93								Date of R	leport: Nov 29,	2017
							Potash	ICPI To	tal Dige	tion								
Sample Number	Но	K20	La	Li	MgO	MnO	Мо	Na20	Nb	Nd	Ni	P205	Pb	Pr	S	Sc	Sm	
	ppm	wt %	ppm	ppm	wt 96	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	
POT003B Ag-SOP-F	<1	19.1	<1	3 <1	2.39	<0.01 <0.01	<1	30.3 0.11	<1	<1	3	<0.01	<1	<1	1870	<1	<1	
			100				ব			<1	2	<0.01	<1	<1	171000	<1	<1	
Ag-SOP-1.15	<1	52.0	<1	<1	1.22	<0.01	<1	0.01	<1	<1	<1	<0.01	<1	<1	186000	<1	<1	
Ag-LN-1.15	<1	25.3	<1	<1	11.7	<0.01	<1	0.02	<1	<1	5	<0.01	<1	<1	174000	<1	<1	
Mining and Minerals								analytic								Rep	ort No: G-201	7-2372
Attention: Jack Zhang								rd., Saska										
PO #/Project: 14081					Tel: (3	06) 933-8	118 Fax	(306) 93	3-5656 E	mail: geo	olab@src	.sk.ca				Date of I	Report: Nov 29	, 2017
Samples: 11							Potasl	ICPI To	tal Dige	stion								
Sample	Sn	Sr	Та	To	Th	TiO2	U, ICP	v	w	Y	Yb	Zn	Zr					
Number	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
POT003B	<1	23	1	<1	<1	0.02	<2	4	6	<1	<0.1	8	3					
Ag-SOP-F	<1	<1	<1	<1	<1	<0.01	2	<1	<1	<1	<0.1	<1	<1					
Ag-SOP-1.15	<1	1	1	<1	<1	⊲0.01	<2	<1	<1	<1	<0.1	<1	<1					
Aq-LN-1.15	<1	<1	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	3	<1					

Mining and Minerals Attention: Jack Zhang PO #Project: 14081 Sanples: 6 Tel: (306) 933-8118 Fax: (306) 933-8108 Fax: (30	Mining and Minerals Attention: Jack Zhang PO #/Project: 14081						15 Inno	vation Bl	analytic vd., Saska : (306) 93	toon, Sa	katchew	an, S7N						port No: G-2017-244 Report: Dec 11, 201
Number pom with pom ppm with pom ppm ppm ppm ppm ppm ppm ppm ppm ppm	Samples: 6							Potasl	ICPI T	otal Dige	stion							
Number pom with pom ppm with pom ppm ppm ppm ppm ppm ppm ppm ppm ppm	Camela	40	4000	Pa.	D.	Can	04	Co	Co	Cr	Cu	Du	-	Eu.	En202	Go	Cd	u.
POTO03B																		
Ag-JA-1-13								-										
Ag-SOP-Conv-1.3																		
Ag-Nath-14							_	-		-		-						
Ag-SQP-Conv-1.4																		
Ag-SOP-Conv-1.4R																		
Mining and Minerals Attention: Jack Zhang PO #/Project: 14081 Sanples: 6 SRC Geoanalytical Laboratories Tel: (306) 933-8118 Fax: (306) 933-81656 Email: geolab@src.sk.ca Date of Report: Dec 11, 2017	Ag-SOP-Conv-1.4	<0.2	<0.01	<1	<02	0.03	<1	<1	<1	<1	1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
Attention: Jack Zhang PO #/Project: 14081 Sample: 6	Ag-SOP-Conv-1.4 R	<0.2	<0.01	<1	<0.2	0.03	<1	4	<1	<1	1	<0.2	<0.2	<0.2	<0.01	<1	<1	<1
PO #/Project: 14081 Sample: 6 Feb. (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca Date of Report: Dec 11, 2017																	Repo	ort No: G-2017-2445
Potash ICP1 Total Digestion Pota																	_	
Sample						Tel: (3)	06) 933-8	118 Fax:	(306) 933	3-5656 E	mail: geo	lab@src	.sk.ca				Date of h	Report: Dec 11, 2017
Number	Samples: 6							Potash	ICP1 To	tal Diges	tion							
Number																		
POT003B																		
Ag-IN-1.3	Number	ppm	wt %	ppm		wt %	wt %	ppm	wt %	ppm	ppm			ppm	ppm		ppm	ppm
Ag-SOP-Conv-1.3	POT003B	<1																
Ag-IN-1.4	Ag-LN-1.3	<1	25.9	<1	<1	11.5	<0.01	<1	0.03	<1	<1	4	<0.01	<1	<1	163000	<1	<1
Ag-SOP-Conv-1.4 <1 54.0 <1 <1 0.47 <0.01 <1 0.01 <1 <1 <1 <0.01 <1 <1 <0.01 <1 <1 168000 <1 <1 <1 Ag-SOP-Conv-1.4 R <1 54.1 <1 <1 0.46 <0.01 <1 0.01 <1 <1 <1 <1 <0.01 <1 <1 <1 169000 <1 <1 <1 169000 <1 <1 <1 <1 <1 69000 <1 <1 <1 <1 <1 69000 <1 <1 <1 <1 <1 69000 <1 <1 <1 <1 <1 69000 <1 <1 <1 <1 <1 69000 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ag-SOP-Conv-1.3	<1	52.0	<1	<1	0.67	< 0.01	<1	< 0.01	<1	<1	<1	< 0.01	<1	<1	164000	<1	<1
Ag-SOP-Conv-1.4 R < 1 54.1 < 1 0.46 < 0.01 < 1 0.01 < 1 < 1 < 1 < 0.01 < 1 < 1 69000 < 1 < 1	Ag-LN-1.4	<1	25.8	<1	<1	11.3	<0.01	<1	0.01	<1	<1	5	<0.01	<1	<1	161000	<1	<1
Mining and Minerals Attention: Jack Zhang PO #/Project: 14081 Sample: 6 Sn Sr Ta Tb Th TiO2 U, ICP V W Y Y Yb Zn Zr Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Ag-SOP-Conv-1.4	<1	54.0	<1	<1	0.47	<0.01	<1	0.01	<1	<1	<1	<0.01	<1	<1	168000	4	<1
Attention: Jack Zhang PO #Project: 14081 Sample: 6 Tel: (306) 933-8118 Fax: (306) 933-5636 Email: geolab@src.sk.ca Potash ICP1 Total Digestion Sample Sample Sn Sr Ta Tb Th Th Though Upic V W Y Yb Zn Zr Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Ag-SOP-Conv-1.4 R	<1	54.1	<1	<1	0.46	<0.01	<1	0.01	<1	<1	<1	<0.01	<1	<1	169000	4	<1
Attention: Jack Zhang PO #Project: 14081 Samples: 6 **Tel: (306) 933-8118 Fax: (306) 933-5636 Email: geolab@src.sk.ca **Potash ICP1 Total Digestion** **Potash ICP1 Total Digestion** **Sample Sn Sr Ta Tb Th Th TiO2 U, ICP V W Y Yb Zn Zr Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Mining and Minerals						SE	C Gens	malytic	al Labo	ratorie	20					Rep	ort No: G-2017-2445
PO #/Project: 14081 Samples: 6 Potash ICP1 Total Digestion Sample Sn Sr Ta Tb Th TiO2 U, ICP V W Y Yb Zn Zr Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Attention: Jack Zhang					125)Ve				-	
Potash ICP1 Total Digestion	PO #/Project: 14081					Tel: (3	06) 933-8	118 Fax:	(306) 93	3-5656 E	mail: geo	olab@src	.sk.ca				Date of l	Report: Dec 11, 2017
Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Samples: 0							Potash	ICPI To	tal Dige	stion							
Number ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Sample	Sn	Sr	Та	Th	Th	TiO2	U.ICP	v	w	Y	Yh	Zn	Zr				
POT003B <1 23 <1 <1 <1 0.02 2 3 5 <1 <0.1 9 3 Ag-UN-1.3 <1 6 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 6 <1 Ag-UN-1.4 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1 Ag-UN-1.4 <1 <1 <2 <1 <1 <1 <0.1 <1 <1 Ag-UN-1.4 <1 2 <1 <1 <0.01 3 <1 <1 <1 <0.01 <2 <1 <1 <1 <1 Ag-UN-1.4 <1 <1 <0.01 3 <1 <1 <1 <0.01 <3 <1 <1 <1 <1 <1 Ag-UN-1.4 <1 2 <1 <1 <1 <0.01 3 <1 <1 <1 <0.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Number																	
Ag-LN-1.3 <1 6 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 6 <1 Ag-SOP-Conv-1.3 <1 2 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1 Ag-SOP-Conv-1.4 <1 <1 2 <1 <1 <0.01 3 <1 <1 <1 <0.1 4 <1 Ag-SOP-Conv-1.4 <1 2 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																		
Ag-SOP-Conv-1.3 <1 2 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1 <1 <1 Ag-UN-1.4 <1 <1 2 <1 <1 <0.01 3 <1 <1 <1 <0.1 4 <1 Ag-UN-1.4 <1 <1 2 <1 <1 <1 <0.01 3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																		
Ag-LN-1.4 <1 <1 <1 <1 <1 <0.01 3 <1 <1 <1 <0.1 4 <1 Ag-SOP-Conv-1.4 <1 2 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1																		
Ag-SOP-Conv-1.4 <1 2 <1 <1 <1 <0.01 <2 <1 <1 <1 <0.1 <1 <1																		
	Ag-SOP-Conv-1.4																	
	Ag-SOP-Conv-1.4 R	<1	2	<1	<1	<1	<0.01	<2	<1	<1	<1	<0.1	1	<1				

Chain of Custody Record

Send samples to:

Eurofins MGT

Unit 2, 91 Leach Highway Kewdale WA 6105

Delivery method:

Courier

Samples from:

Send reports to:

360 Environmental

10 Bermondsey Street West Leederville WA

labresults@360environmental.com.au juliepalich@360environmental.com.au Project name:

Agrimin ASS Lake Mackay

Project number: 2731

Name of samplers:

Gerry Bradley Sarah Breheny

Details verified by: Lab quote reference:

Turn around time:

Normal

environmental

COC Number: 2731-01

N	O	Ε	н	S	0

			Matr	ix/Con	tainer				,		_		Sample Analysis			
Lab Reference	Sample Name	Soil (jar) Soil (bag)		Soil (bag) Water		Other	Date		pHf	рFох	CRS	M8, Fe, Al	Groundwater R15	Total uranium and thorioum		
	PPDS1 -0.03		X		Fibre		23/04/2018		X	х						
	PPDS2-0.03		x				23/04/2018		X	X						
	PPDS3-0.03		x				23/04/2018		Х	Х						
	PPDS4-0.03		X				23/04/2018		X	X						
	PPDS5-0.03		x				23/04/2018		X	X						
	PPUS1 -0.02		x				23/04/2018		X	X						
	PPUS2 -0.02		X				23/04/2018		Х	x					1 1 - 7.	
	PPUS3 -0.02		X				23/04/2018		х	x						
	PPUS4 -0.02		х				23/04/2018		х	х						
	PPUS5 -0.02		X				23/04/2018		X	х					1	
	PPASB1			X			26/04/2018						X	X		
	PPASB2			X			26/04/2018			<u> </u>	J		X	X		
	PPASB3			Х			26/04/2018						X	X		
	PPASB4			X			26/04/2018				1.10		X	X		
linquished by Sa int name):	arah Breheny			Signat	ture:		Date: Time:	9/5/	18	Received (print nar		MAX	& VAN Q	STgnature:	Date: Z	2-44
inquished by nt name):				Signat	ture:	- 1	Date: Time:			Received (print nar			MA	Signature:	Date:	19/05/

Cartlyn Cubson @ 9/5/18 3:11PM -8-7°C

597569

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: 360 Environmental

Contact name: Sarah Breheny

AGRIMIN ASS LAKE MACKAY Project name:

Project ID:

COC number: Not provided

Turn around time: 5 Day

Date/Time received: May 9, 2018 3:11 PM

Eurofins | mgt reference: 597569

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \square Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- \square Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Sarah Breheny - SarahBreheny@360environmental.com.au.

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE MACKAY

Project ID: 2731

Order No.: Received: May 9, 2018 3:11 PM

 Report #:
 597569
 Due:
 May 16, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

		Thorium	Uranium	Acid Sulfate Soils Field pH Test	ASS Groundwater Quality Suite - WA Department of Environment and				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х		X
Sydı	ney Laboratory	- NATA Site # 1	8217						
Bris	bane Laborator	y - NATA Site#	20794						
Pert	h Laboratory - N	NATA Site # 237	36					Х	
Exte	rnal Laboratory	<u>'</u>			_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	PPDS1- 0.03	Apr 23, 2018		Soil	P18-My11115			Х	
2	PPDS2 - 0.03	Apr 23, 2018		Soil	P18-My11116			Х	
3	PPDS3 - 0.03	Apr 23, 2018		Soil	P18-My11117			Х	
4	PPDS4 - 0.03	P18-My11118			Х				
5	PPDS5 - 0.03			Х					
6	PPUS1 - 0.02	Apr 23, 2018		Soil	P18-My11120			Х	
7	PPUS2 - 0.02	P18-My11121			Х				
8	PPUS3 - 0.02	Apr 23, 2018		Soil	P18-My11122			Х	
9	PPUS4 - 0.02	Apr 23, 2018		Soil	P18-My11123			Х	

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: 360 Environmental Address: 10 Bermondsey St

10 Bermondsey St West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE MACKAY

Project ID: 2731

Order No.: Received: May 9, 2018 3:11 PM

 Report #:
 597569
 Due:
 May 16, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

		Thorium	Uranium	Acid Sulfate Soils Field pH Test	ASS Groundwater Quality Suite - WA Department of Environment and			
Mell	oourne Laborate	ory - NATA Site#	1254 & 14271		Х	Х		Х
Syd	ney Laboratory	- NATA Site # 182	217					
Bris	bane Laborator	y - NATA Site # 2	0794					
Pert	h Laboratory - I	NATA Site # 2373	6				Х	
10	PPUS5 - 0.02	Apr 23, 2018	Soil	P18-My11124			Х	
11	PPASB1	Apr 26, 2018	Water	P18-My11125	Х	Х		Х
12	PPASB2	Apr 26, 2018	Water	P18-My11126	Х	Х		Х
13	PPASB3	Apr 26, 2018	Water	P18-My11127	Х	Х		Х
14	PPASB4	Х	Х		Х			
Test	Counts				4	4	10	4

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

360 Environmental 10 Bermondsey St West Leederville WA 6007

NATA

Attention: Sarah Breheny

597569-W-V2 Report

AGRIMIN ASS LAKE MACKAY Project name

Project ID 2731

Received Date May 09, 2018

Client Sample ID			G01PPASB1	G01PPASB2	G01PPASB3	G01PPASB4
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			P18-My11125	P18-My11126	P18-My11127	P18-My11128
Date Sampled			Apr 26, 2018	Apr 26, 2018	Apr 26, 2018	Apr 26, 2018
Test/Reference	LOR	Unit				
	•	•				
Acidity (as CaCO3)	10	mg/L	62	31	28	26
Ammonia (as N)	0.01	mg/L	0.46	0.12	< 0.01	< 0.01
Chloride	1	mg/L	140000	110000	94000	110000
Conductivity (at 25°C)	1	uS/cm	180000	180000	180000	180000
Nitrate & Nitrite (as N)	0.05	mg/L	5.1	4.5	4.0	4.9
pH (at 25°C)	0.1	pH Units	6.7	6.8	6.9	7.2
Phosphate total (as P)	0.05	mg/L	5.1	0.12	0.12	0.15
Phosphorus filterable reactive (as P)	0.05	mg/L	< 0.05	< 0.05	0.10	0.16
Sulphate (as S)	5	mg/L	140	11000	5100	11000
Total Dissolved Solids	10	mg/L	^{Q19} 450000	^{Q19} 280000	^{Q19} 240000	^{Q19} 280000
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	2.8	< 0.2	0.3	< 0.2
Total Nitrogen (as N)	0.2	mg/L	7.9	4.5	4.3	4.9
Alkalinity (speciated)						
Total Alkalinity (as CaCO3)	20	mg/L	38	26	28	24
Heavy Metals	·					
Aluminium	0.05	mg/L	190	< 1	< 1	< 1
Aluminium (filtered)	0.05	mg/L	< 1	< 1	< 1	< 1
Arsenic (filtered)	0.001	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Barium	0.02	mg/L	0.75	< 0.1	< 0.1	< 0.1
Beryllium	0.001	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Cadmium (filtered)	0.0002	mg/L	0.0043	< 0.004	< 0.004	< 0.004
Chromium (filtered)	0.001	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Cobalt	0.001	mg/L	0.074	< 0.02	< 0.02	< 0.02
Iron	0.05	mg/L	290	1.1	< 1	< 1
Iron (filtered)	0.05	mg/L	< 1	< 1	< 1	< 1
Lead	0.001	mg/L	0.46	0.16	0.067	0.11
Manganese (filtered)	0.005	mg/L	2.7	1.4	< 0.1	< 0.1
Mercury	0.0001	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Molybdenum	0.005	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Nickel (filtered)	0.001	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Selenium (filtered)	0.001	mg/L	0.031	0.032	0.027	0.031
Strontium	0.005	mg/L	6.1	8.2	8.5	8.4
Thorium	1	mg/L	3.2	3.2	3.2	3.0
Uranium	0.005	mg/L	0.13	< 0.1	< 0.1	< 0.1
Zinc (filtered)	0.005	mg/L	0.43	0.23	0.14	0.24

Report Number: 597569-W-V2

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			G01PPASB1 Water P18-My11125 Apr 26, 2018	Water	G01PPASB3 Water P18-My11127 Apr 26, 2018	G01PPASB4 Water P18-My11128 Apr 26, 2018
Test/Reference	LOR	Unit				
Alkali Metals						
Sodium	0.5	mg/L	150000	140000	140000	130000

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
ASS Groundwater Quality Suite - WA Department of Environment and Conservation	n		
Acidity (as CaCO3)	Melbourne	May 11, 2018	14 Day
- Method: LTM-INO-4210 Acidity			
Ammonia (as N)	Melbourne	May 11, 2018	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Chloride	Melbourne	May 11, 2018	28 Day
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Conductivity (at 25°C)	Melbourne	May 11, 2018	28 Day
- Method: LTM-INO-4030 Conductivity			
pH (at 25°C)	Melbourne	May 11, 2018	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phosphate total (as P)	Melbourne	May 11, 2018	28 Day
- Method: APHA 4500-P E. Phosphorous			
Phosphorus filterable reactive (as P)	Melbourne	May 11, 2018	2 Day
- Method: APHA 4500-P Phosphate (filterable reactive)			
Sulphate (as S)	Melbourne	May 11, 2018	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Total Dissolved Solids	Melbourne	May 11, 2018	7 Day
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Alkalinity (speciated)	Melbourne	May 11, 2018	14 Day
- Method: APHA 2320 Alkalinity by Titration			
Heavy Metals	Melbourne	May 17, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Acid Sulphate Metals : Metals M9 filtered	Melbourne	May 11, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Alkali Metals	Melbourne	May 11, 2018	180 Day
- Method: USEPA 6010 Alkali Metals			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	May 11, 2018	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 15, 2018	7 Day
- Method: LTM-INO-4310 TKN in Waters & Soils by FIA			
Thorium	Melbourne	May 11, 2018	6 Month

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St

West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE MACKAY

Project ID: 2731

Order No.: Received: May 9, 2018 3:11 PM

 Report #:
 597569
 Due:
 May 16, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

		Thorium	Uranium	Acid Sulfate Soils Field pH Test	ASS Groundwater Quality Suite - WA Department of Environment and				
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х		Х
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisl	bane Laborator	y - NATA Site#	20794						
Perti	h Laboratory - N	NATA Site # 237	'36					Х	
Exte	rnal Laboratory	/	1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	PPDS1- 0.03	Apr 23, 2018		Soil	P18-My11115			Х	
2	PPDS2 - 0.03	Apr 23, 2018		Soil	P18-My11116			Х	
3	PPDS3 - 0.03	Apr 23, 2018		Soil	P18-My11117			Х	
4	PPDS4 - 0.03	Apr 23, 2018		Soil	P18-My11118			Х	
5	PPDS5 - 0.03	Apr 23, 2018		Soil	P18-My11119			Х	
6	PPUS1 - 0.02	Apr 23, 2018		Soil	P18-My11120			Х	
7	PPUS2 - 0.02	Apr 23, 2018		Soil	P18-My11121			Х	
8	PPUS3 - 0.02	Apr 23, 2018		Soil	P18-My11122			Х	
9	PPUS4 - 0.02	Apr 23, 2018		Soil	P18-My11123			Х	

Report Number: 597569-W-V2

Phone:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

08 9388 8360

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Priority:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St West Leederville

WA 6007

AGRIMIN ASS LAKE MACKAY **Project Name:**

Project ID: 2731 Order No.: Received: May 9, 2018 3:11 PM

Report #: 597569 Due: May 16, 2018

Contact Name: Fax: 08 9381 2360 Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

5 Day

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								ASS Groundwater Quality Suite - WA Department of Environment and
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х		Х
		- NATA Site # 1							
		y - NATA Site #							
	· · · · · · · · · · · · · · · · · · ·	NATA Site # 237	36	ı				Х	
10	PPUS5 - 0.02	Apr 23, 2018		Soil	P18-My11124			Х	
11	PPASB1	Apr 26, 2018		Water	P18-My11125	Х	Х		Х
12	PPASB2	Apr 26, 2018		Water	P18-My11126	Х	Х		Х
13	PPASB3	Apr 26, 2018		Water	P18-My11127	Х	Х		Х
14	PPASB4	Apr 26, 2018		Water	P18-My11128	Х	Х		Х
Test	Counts					4	4	10	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. Certified Reference Material - reported as percent recovery. CRM

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Duplicate

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense CP Client Parent - QC was performed on samples pertaining to this report

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. NCP

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected

QC Data General Comments

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS,
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Acidity (as CaCO3)	mg/L	< 10	10	Pass	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chloride	mg/L	< 1	1	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Phosphate total (as P)	mg/L	< 0.05	0.05	Pass	
Phosphorus filterable reactive (as P)	mg/L	< 0.05	0.05	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Dissolved Solids	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Alkalinity (speciated)					
Total Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Method Blank					
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium	mg/L	< 0.02	0.001	Pass	
Beryllium	mg/L	< 0.02	0.001	Pass	
Cadmium (filtered)		< 0.0001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.0002	0.0002	Pass	
	mg/L	1 1			
Cobalt	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead (Charach)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Molybdenum	mg/L	< 0.005	0.005	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Strontium	mg/L	< 0.005	0.005	Pass	
Uranium	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Method Blank		T T			
Alkali Metals					
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery		, , ,			
Ammonia (as N)	%	104	70-130	Pass	
Chloride	%	124	70-130	Pass	
Nitrate & Nitrite (as N)	%	103	70-130	Pass	
Phosphate total (as P)	%	82	70-130	Pass	
Sulphate (as S)	%	107	70-130	Pass	
Total Dissolved Solids	%	82	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	95	70-130	Pass	
LCS - % Recovery					
Alkalinity (speciated)					
Total Alkalinity (as CaCO3)	%	94	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Aluminium	%	105	80-120	Pass	
Aluminium (filtered)	%	97	80-120	Pass	

Test			Units	Result 1	Acceptar Limits	ce Pass Limits	Qualifying Code
Arsenic (filtered)			%	99	80-120	Pass	
Barium			%	110	80-120	Pass	
Beryllium			%	94	80-120	Pass	
Cadmium (filtered)			%	94	80-120	Pass	
Chromium (filtered)			%	98	80-120	Pass	
Cobalt			%	102	80-120	Pass	
Iron			%	101	80-120	Pass	
Iron (filtered)			%	94	80-120	Pass	
Lead			%	109	80-120	Pass	
Manganese (filtered)			%	95	80-120	Pass	
Mercury			%	104	75-125	Pass	
Molybdenum			%	103	80-120	Pass	
Nickel (filtered)			%	92	80-120	Pass	
Selenium (filtered)			%	94	80-120	Pass	
Strontium			%	107	80-120	Pass	
Thorium			%	102	70-130	Pass	
Uranium			%	100	80-120	Pass	
Zinc (filtered)			%	95	80-120	Pass	
LCS - % Recovery					, 55 120		
Alkali Metals							
Sodium			%	115	70-130	Pass	
	T	QA			Acceptar		Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery							
				Result 1			
Ammonia (as N)	M18-My13441	NCP	%	101	70-130	Pass	
Chloride	B18-My15571	NCP	%	92	70-130	Pass	
Nitrate & Nitrite (as N)	M18-My13441	NCP	%	93	70-130	Pass	
Phosphorus filterable reactive (as	N40 N 40700	NOD	0/	00	70.400	D	
P)	M18-My16732	NCP	%	80	70-130	Pass	
Sulphate (as S)	M18-My14182	NCP	%	107	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M18-My16735	NCP	%	119	70-130	Pass	
Spike - % Recovery				Doorle 4		1	
Alkalinity (speciated)	T 5/01/ /			Result 1			
Total Alkalinity (as CaCO3)	B18-My15578	NCP	%	104	70-130	Pass	
Spike - % Recovery				T D 1/4 T		T	
Heavy Metals	T			Result 1			
Aluminium	M18-My13428	NCP	%	105	75-125	Pass	
Aluminium (filtered)	P18-My10382	NCP	%	96	75-125	Pass	
Arsenic (filtered)	P18-My10382	NCP	%	97	70-130	Pass	
Barium	M18-My13428	NCP	%	116	75-125	Pass	
Beryllium	M18-My13428	NCP	%	91	75-125	Pass	
Cadmium (filtered)	P18-My10382	NCP	%	96	70-130	Pass	
Chromium (filtered)	P18-My10382	NCP	%	97	70-130	Pass	
Cobalt	M18-My13428	NCP	%	102	75-125	Pass	
Iron	M18-My13428	NCP	%	105	75-125	Pass	
Iron (filtered)	P18-My10382	NCP	%	93	70-130	Pass	
Lead	M18-My13428	NCP	%	106	75-125	Pass	
Manganese (filtered)	P18-My10382	NCP	%	94	70-130	Pass	
Mercury	M18-My13428	NCP	%	108	70-130	Pass	
Molybdenum	M18-My13428	NCP	%	101	75-125	Pass	
Nickel (filtered)	P18-My10382	NCP	%	93	70-130	Pass	
Selenium (filtered)	P18-My10382	NCP	%	94	70-130	Pass	
ا م	M40 M.40400	1 1100	۱ ۸٬	1 440	75 105	Door	1
Strontium	M18-My13428	NCP	%	113	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Zinc (filtered)	P18-My10382	NCP	%	96			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Sodium	M18-My14082	NCP	%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					,				
				Result 1	Result 2	RPD			
Acidity (as CaCO3)	M18-My12728	NCP	mg/L	27	27	1.1	30%	Pass	
Ammonia (as N)	M18-My16982	NCP	mg/L	0.69	0.64	8.0	30%	Pass	
Chloride	M18-My16770	NCP	mg/L	290	300	<1	30%	Pass	
Conductivity (at 25°C)	M18-My15954	NCP	uS/cm	2800	2800	<1	30%	Pass	
Nitrate & Nitrite (as N)	M18-My16982	NCP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
pH (at 25°C)	M18-My15954	NCP	pH Units	7.4	7.5	pass	30%	Pass	
Phosphate total (as P)	P18-My10379	NCP	mg/L	8.8	10	14	30%	Pass	
Phosphorus filterable reactive (as P)	P18-My10370	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Sulphate (as S)	M18-My14116	NCP	mg/L	120	120	2.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	P18-My10379	NCP	mg/L	2.9	3.3	12	30%	Pass	
Duplicate	1 10 My 1007 5	1101	1119/1	2.0	0.0		0070	1 455	
Alkalinity (speciated)				Result 1	Result 2	RPD			
Total Alkalinity (as CaCO3)	M18-My13442	NCP	mg/L	790	790	1.0	30%	Pass	
Duplicate	W10 Wy10442	1401	IIIg/L	730	730	1.0	3070	1 433	
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M18-My13428	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Aluminium (filtered)	P18-My10382	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	P18-My10382	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium	M18-My13428	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Beryllium	M18-My13428	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	P18-My10382	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	P18-My10382	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	M18-My13428	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	M18-My13428	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Iron (filtered)	P18-My10382	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	M18-My13428	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	P18-My10382	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	M18-My13428	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum	M18-My13428	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel (filtered)	P18-My10382	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium (filtered)	P18-My10382	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Strontium	M18-My13428	NCP	mg/L	0.025	0.026	4.0	30%	Pass	
Uranium	M18-My13428	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	P18-My10382	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate	1 10 1111 10002	1101	g/ <u>-</u>	1 10.000	3 0.000	,,	1 5570	, aoo	
Alkali Metals				Result 1	Result 2	RPD			
Sodium	M18-My14082	NCP	mg/L	1100	1300	12	30%	Pass	
Duplicate	WITO WIY 14002	1101	i iiig/L	1100	1500	14	3070	1 433	
Dapiloate				Result 1	Result 2	RPD	T		
Total Dissolved Solids	P18-My11126	СР	mg/L	280000	290000	3.0	30%	Pass	

Comments

V2 - This report has been amended to include extra metals results

Sample Integrity

Custody Seals Intact (if used)	Yes
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

Q19 TDS may bias high due to the presence of fine particulate or colloidal matter that may pass through the filter paper.

Authorised By

Robert Johnston Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Michael Brancati Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.

Enviro Sample WA

From: Robert Johnston

Sent: Tuesday, 15 May 2018 2:49 PM

To: Enviro Sample WA

Subject: 5 DAY: CRS suite analysis for 597569

ADDITIONAL ANALYSIS - 5 DAY TAT

From: Sarah Breheny [mailto:SarahBreheny@360environmental.com.au]

Sent: Tuesday, 15 May 2018 12:56 PM

To: Robert Johnston

Subject: RE: CRS suite analysis for 597569

Hi Robert,

Can you please replace the previous COC I just sent an hour ago with this one attached. The client wants to go ahead with metals and Th, U on the 5 sediment samples.

Can you advise how long will this analysis take? Also I still want to clarify how long is the holding time for CRS?

Thanks

Sarah

From: Sarah Breheny

Sent: Tuesday, 15 May 2018 12:13 PM

To: 'Robert Johnston' < Robert Johnston@eurofins.com>

Subject: CRS suite analysis for 597569

Hi Rob,

Please find attached the COC for further analysis for sample batch number 597569. Please note 5 of the samples we may want to do CRS, metals, and ASLP in a few weeks. How long will you hold the samples and how long is the holding time for CRS?

Thanks

Sarah

Rob Johnston 15/5/18 598704

Chain of Custody Record

(print name):	Notes: Notes: PPDS: PPASI PPASI PPASI PPASI PPASI	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Soil (jar) Natrix/Container Water Fibre Cement Other Date:	Sign (Seg) arrix/Co (Ch@360e) Water Sign (Seg)	Tibre Cement Fibre Cement	Other Other	om.
0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	s to:		bresult:	@360e ch@36	nvironr 30envi	nental.c	om.au ntal.com.au
Matrix/Container Matrix/Container Matrix/Container			ıliepali	ch@36	0envi	ronme	ntal.com.au
Matrix/Container Matrix/Container Matrix/Container	Notes:						
Sample Name Sample Name Soil (jar)			3	atrix/Co	ntainer		
Sample Name	nce	ne			nt		
PPDS1-0.03 X 23/04/2018 X PPDS2-0.03 X 23/04/2018 X PPDS3-0.03 X 23/04/2018 X PPDS3-0.03 X 23/04/2018 X PPDS3-0.03 X 23/04/2018 X PPUS1-0.02 X 23/04/2018 X PPUS2-0.02 X 23/04/2018 X PPUS3-0.02 X 23/04/2018 X PPASB1 X 23/04/2018 X PPASB2 X 26/04/2018 X PPASB3 X 26/04/2018 X PPASB4 X 26/04/2018 X PPASB4 X 26/04/2018 X PPASB5 <td>Lab Reference</td> <td>Sample Name</td> <td></td> <td>0.2</td> <td>Fibre Cement</td> <td>Other</td> <td>Date</td>	Lab Reference	Sample Name		0.2	Fibre Cement	Other	Date
1003	PPDS	S1 -0.03	×				23/04/2
NO3	PPDS.	S2-0.03	×				23/04/2
1.03 x 23/04/2018 x 1.03 x 23/04/2018 x 2.002 x 23/04/2018 x 0.02 x 26/04/2018 x x 26/04/2018 x 26/04/2018 x 26/04/2018 x 26/04/2018 x 26/04/2018 26/04/2018 x	PPDS.	\$3-0.03	×	H			23/04/2
NO3	PPDS.	S4-0.03	×				23/04/2
0.02	PPDS	S5-0.03	×				23/04/2
0.02	PPUS	\$1 -0.02	×				23/04/2
0.02	PPUS	\$2 -0.02	×				23/04/2
0.02	PPUS	S3 -0.02	×				23/04/2
0.02	PPUS	S4 -0.02	×				23/04/2
X 26/04/2018 X 26/04/2018 X 26/04/2018 X 26/04/2018 X 26/04/2018 X 26/04/2018 Time:	PPUS	S5 -0.02	×				23/04/2
X 26/04/2018 X 26/04/2018 X 26/04/2018 X 26/04/2018 Sigmature: Date:	PPASI	SB1		×			26/04/2
X 26/04/2018 X 26/04/2018 Signature: Date: Time:	PPASI	SB2		×			26/04/2
X 26/04/2018 Sigmature: Date: Time:	PPASI	SB3		×			26/04/2
Signature: Date:	PPAS	SB4	H	×			26/04/2
lime:	Relinquished by Sarah Brehe	neny		Signa	ture:		Date:

598704

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: 360 Environmental

Contact name: Sarah Breheny
Project name: AGRIMIN ASS LAKE

Project ID: 2731 COC number: 2731-02 Turn around time: 5 Day

Date/Time received: May 15, 2018 2:49 PM

Eurofins | mgt reference: 598704

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Sarah Breheny - SarahBreheny@360environmental.com.au.

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

598704

08 9388 8360

08 9381 2360

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Priority:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: 360 Environmental Address: 10 Bermondsev St

10 Bermondsey St West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE

Project ID: 2731

Received: May 15, 2018 2:49 PM

Due: May 22, 2018

Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

5 Day

		Sa	Aluminium	Iron	Thorium	Uranium	Metals M8	Moisture Set	Moisture Set	Chromium Suite (Minus ANC- WA)				
Mell	ourne Laborat	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х		
Syd	ney Laboratory	- NATA Site # 1	8217											
Bris	bane Laborator	y - NATA Site #	20794								Х	Х	Х	
Pert	h Laboratory - I	NATA Site # 237	'36											
Exte	rnal Laboratory	у												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	PPDS1-0.03	Apr 23, 2018		Soil	P18-My21721							Х	Х	
2	PPDS2-0.03	Apr 23, 2018		Soil	P18-My21722							Х	Х	
3	PPDS3-0.03	Apr 23, 2018		Soil	P18-My21723							Х	Х	
4	PPDS4-0.03	Apr 23, 2018		Soil	P18-My21724							Х	Х	
5												Х	Х	
6 PPUS1-0.02 Apr 23, 2018 Soil P18-My21726								Х	Х	Х	Х			
7	PPUS2-0.02	Х	Х	Х	Х	Х	Х							
8 PPUS3-0.02 Apr 23, 2018 Soil P18-My21728								Х	Х	Х	Х			
9	PPUS4-0.02	Х	Х	Х	Х	Х	Х							

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

08 9388 8360

08 9381 2360

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

360 Environmental **Company Name:**

Address: 10 Bermondsey St West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE

Project ID: 2731 Order No.: Received: May 15, 2018 2:49 PM Report #: 598704

Due: May 22, 2018

> Priority: 5 Day

Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

		Sa	mple Detail			Aluminium	Iron	Thorium	Uranium	Metals M8	Moisture Set	Moisture Set	Chromium Suite (Minus ANC- WA)	
Mel	bourne Laboratoi	ry - NATA Site	# 1254 & 1427	71		Х	Х	Х	Х	Х	Х	Х		
Syd	ney Laboratory -	NATA Site # 1	8217											
Bris	sbane Laboratory						Х	Х	Х					
Per	th Laboratory - N													
10	PPUS5-0.02	Apr 23, 2018	P18-My21730	Х	Х	Х	Х	Х	Х					
Tes	t Counts		5	5	5	5	5	10	10	5				

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

360 Environmental 10 Bermondsey St West Leederville WA 6007

Attention: Sarah Breheny

598704-S Report

AGRIMIN ASS LAKE Project name

Project ID 2731

Received Date May 15, 2018

Client Sample ID			PPDS1-0.03	PPDS2-0.03	PPDS3-0.03	PPDS4-0.03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			P18-My21721	P18-My21722	P18-My21723	P18-My21724
Date Sampled			Apr 23, 2018	Apr 23, 2018	Apr 23, 2018	Apr 23, 2018
Test/Reference	LOR	Unit				
Extraneous Material	•					
<2mm Fraction	0.005	g	49	54	49	59
>2mm Fraction	0.005	g	2.8	1.1	0.26	3.0
Analysed Material	0.1	%	95	98	99	95
Extraneous Material	0.1	%	5.4	1.9	0.5	4.8
Chromium Suite (Minus ANC- WA)						
CRS suite WA (-ANC) - Liming Rate	1	kg CaCO3/t	< 1	< 1	< 1	1.0
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	15
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	0.02
pH-KCL	0.1	pH Units	8.2	8.1	8.2	8.2
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	< 2	< 2	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	0.023
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	15
Sulfur - KCl Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	0.67	0.82	0.54	1.0
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	130	170	110	210
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	0.21	0.26	0.17	0.33
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1	< 1	< 1	< 1
% Moisture	1	%	16	21	17	26

Client Sample ID			PPDS5-0.03	PPUS1-0.02	PPUS2-0.02	PPUS3-0.02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			P18-My21725	P18-My21726	P18-My21727	P18-My21728
Date Sampled			Apr 23, 2018	Apr 23, 2018	Apr 23, 2018	Apr 23, 2018
Test/Reference	LOR	Unit				
Heavy Metals		•				
Aluminium	10	mg/kg	-	11000	2600	3300
Arsenic	2	mg/kg	-	< 2	< 2	< 2
Barium	10	mg/kg	-	100	< 10	24
Beryllium	2	mg/kg	-	< 2	< 2	< 2
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	18	7.4	9.1
Cobalt	5	mg/kg	-	< 5	< 5	< 5
Copper	5	mg/kg	-	8.8	< 5	< 5
Iron	20	mg/kg	-	14000	4000	4100
Lead	5	mg/kg	-	< 5	< 5	< 5
Mercury	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	-	< 5	< 5	< 5
Nickel	5	mg/kg	-	6.4	< 5	< 5
Selenium	2	mg/kg	-	< 2	< 2	< 2
Strontium	10	mg/kg	-	580	84	11
Thorium	1	mg/kg	-	17	6.0	7.1
Uranium	10	mg/kg	-	< 10	< 10	< 10
Zinc	5	mg/kg	-	20	6.2	9.1
Extraneous Material	ļ.	1 0 0				
<2mm Fraction	0.005	g	65	-	-	-
>2mm Fraction	0.005	g	0.22	-	-	-
Analysed Material	0.1	%	100	-	-	-
Extraneous Material	0.1	%	0.3	-	-	-
Chromium Suite (Minus ANC- WA)	_					
CRS suite WA (-ANC) - Liming Rate	1	kg CaCO3/t	< 1	_	_	_
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	10	mol H+/t		_	-	-
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	_	-	-
pH-KCL	0.1	pH Units		_	-	-
Acid trail - Titratable Actual Acidity	2	mol H+/t		_	-	-
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S		-	-	-
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	-	-	-
Chromium Reducible Sulfur -acidity units	3	mol H+/t		-	-	-
Sulfur - KCI Extractable	0.02	% S	n/a	-	-	-
HCI Extractable Sulfur	0.02	% S	n/a	-	-	-
Net Acid soluble sulfur	0.02	% S	n/a	-	-	-
Net Acid soluble sulfur - acidity units	10	mol H+/t		-	-	-
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	-	-	-
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3		-	-	-
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t		-	-	-
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	0.18	-	-	-
ANC Fineness Factor		factor	1.5	-	-	-
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	-	-	-
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t		-	-	-
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t		-	-	-
			-			
% Moisture	1	%	16	15	16	16

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			PPUS4-0.02 Soil P18-My21729 Apr 23, 2018	PPUS5-0.02 Soil P18-My21730 Apr 23, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Aluminium	10	mg/kg	6900	4800
Arsenic	2	mg/kg	< 2	< 2
Barium	10	mg/kg	15	16
Beryllium	2	mg/kg	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	14	12
Cobalt	5	mg/kg	< 5	< 5
Copper	5	mg/kg	6.4	< 5
Iron	20	mg/kg	9300	6300
Lead	5	mg/kg	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5
Nickel	5	mg/kg	< 5	< 5
Selenium	2	mg/kg	< 2	< 2
Strontium	10	mg/kg	14	21
Thorium	1	mg/kg	13	10
Uranium	10	mg/kg	< 10	< 10
Zinc	5	mg/kg	18	15
% Moisture	1	%	20	15

Report Number: 598704-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	May 21, 2018	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Metals M8	Melbourne	May 21, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Thorium	Melbourne	May 21, 2018	6 Month
- Method: LTM-MET-3030 by ICP-OES			
Extraneous Material	Brisbane	May 21, 2018	6 Week
- Method: LTM-GEN-7050/7070			
Chromium Suite (Minus ANC- WA)	Brisbane	May 21, 2018	6 Week
- Method: LTM-GEN-7070			
% Moisture	Melbourne	May 16, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St

West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE

Project ID: 2731

 Order No.:
 Received:
 May 15, 2018 2:49 PM

 Report #:
 598704
 Due:
 May 22, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

	Sample Detail								Cobalt	Iron	Molybdenum	Selenium	Strontium	Thorium	Uranium	Metals M8	Moisture Set	Moisture Set	Chromium Suite (Minus ANC- WA)
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217																
Bris	bane Laborator	y - NATA Site #	20794														Х	Х	X
Pert	h Laboratory - I	NATA Site # 237	36																
Exte	rnal Laboratory	<u>'</u>																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	PPDS1-0.03	Apr 23, 2018		Soil	P18-My21721													Х	X
2	PPDS2-0.03	Apr 23, 2018		Soil	P18-My21722													Х	Х
3	PPDS3-0.03	Apr 23, 2018		Soil	P18-My21723													Х	X
4	PPDS4-0.03	Apr 23, 2018		Soil	P18-My21724													Х	X
5	PPDS5-0.03	Apr 23, 2018		Soil	P18-My21725													Х	Х
6	PPUS1-0.02	Apr 23, 2018		Soil	P18-My21726	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
7	PPUS2-0.02	Apr 23, 2018		Soil	P18-My21727	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
8	PPUS3-0.02	Apr 23, 2018		Soil	P18-My21728	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
9	PPUS4-0.02	Apr 23, 2018		Soil	P18-My21729	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

Eurofins | mgt 2/91, Leach Highway, Kewdale, WA, Australia, 6105 ABN : 50 005 085 521 Telephone: +61 8 9251 9600 Page 5 of 10

Date Reported:May 24, 2018

Report Number: 598704-S

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

08 9388 8360

08 9381 2360

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St

West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE

Project ID: 2731 Order No.: Received: May 15, 2018 2:49 PM Report #: 598704

Due: May 22, 2018

> Priority: 5 Day

Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

	Sample Detail					Aluminium	Barium	Beryllium	Cobalt	Iron	Molybdenum	Selenium	Strontium	Thorium	Uranium	Metals M8	Moisture Set	Moisture Set	Chromium Suite (Minus ANC- WA)
Melb	ourne Laborat	ory - NATA Site	# 1254 & 1427	71		Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	
Sydr	ney Laboratory	- NATA Site # 1	8217																
Brisl	Brisbane Laboratory - NATA Site # 20794																Х	Χ	Х
Perti	Perth Laboratory - NATA Site # 23736																		
10	10 PPUS5-0.02 Apr 23, 2018 Soil P18-My21730							Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Test	est Counts							5	5	5	5	5	5	5	5	5	10	10	5

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 598704-S

Quality Control Results

Test	Test		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					_		
Heavy Metals							
Aluminium			mg/kg	< 10	10	Pass	
Arsenic			mg/kg	< 2	2	Pass	
Barium			mg/kg	< 10	10	Pass	
Beryllium			mg/kg	< 2	2	Pass	
Cadmium			mg/kg	< 0.4	0.4	Pass	
Chromium			mg/kg	< 5	5	Pass	
Cobalt			mg/kg	< 5	5	Pass	
Copper			mg/kg	< 5	5	Pass	
Iron	Iron			< 20	20	Pass	
Lead			mg/kg	< 5	5	Pass	
Mercury			mg/kg	< 0.1	0.1	Pass	
Molybdenum			mg/kg	< 5	5	Pass	
Nickel			mg/kg	< 5	5	Pass	
Selenium			mg/kg	< 2	2	Pass	
Strontium			mg/kg	< 10	10	Pass	
Uranium			mg/kg	< 10	10	Pass	
Zinc			mg/kg	< 5	5	Pass	
LCS - % Recovery			mg/ng	10	<u> </u>	1 400	
Heavy Metals							
Arsenic			%	110	80-120	Pass	
Barium			%	113	80-120	Pass	
Beryllium			%	114	80-120	Pass	
Cadmium			%	103	80-120	Pass	
			%	113	80-120		
Chromium Cobalt			%	119	80-120	Pass	
						Pass	
Copper			%	112	80-120	Pass	
Lead			%	117	80-120	Pass	
Mercury			%	98	75-125	Pass	
Molybdenum			%	113	80-120	Pass	
Nickel			%	112	80-120	Pass	
Selenium			%	111	80-120	Pass	
Zinc			%	110	80-120	Pass	
LCS - % Recovery							
Chromium Suite (Minus ANC- WA)							
Chromium Reducible Sulfur			%	100	70-130	Pass	
Acid Neutralising Capacity (ANCbt)	T		%	105	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals	Γ	1		Result 1			
Arsenic	M18-My26751	NCP	%	105	75-125	Pass	
Barium	M18-My26751	NCP	%	134	75-125	Fail	Q08
Beryllium	M18-My26751	NCP	%	115	75-125	Pass	
Cadmium	M18-My26751	NCP	%	101	75-125	Pass	
Chromium	M18-My26751	NCP	%	129	75-125	Fail	Q08
Cobalt	M18-My26751	NCP	%	91	75-125	Pass	
Copper	M18-My26751	NCP	%	109	75-125	Pass	
Lead	M18-My26751	NCP	%	98	75-125	Pass	
Mercury	M18-My26751	NCP	%	90	70-130	Pass	
Molybdenum	M18-My26751	NCP	%	112	75-125	Pass	

Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	•	Source					Limits	Limits	Code
Nickel	M18-My26751	NCP	%	111			75-125	Pass	
Selenium	M18-My26751	NCP	%	95			75-125	Pass	
Zinc	M18-My26751	NCP	%	123			75-125	Pass	Ouglifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1 1		T		
Chromium Suite (Minus ANC- WA)		1		Result 1	Result 2	RPD			
CRS suite WA (-ANC) - Liming Rate	P18-My21725	СР	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	P18-My21725	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	P18-My21725	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
pH-KCL	P18-My21725	CP	pH Units	8.3	8.2	<1	30%	Pass	
Acid trail - Titratable Actual Acidity	P18-My21725	CP	mol H+/t	< 2	< 2	<1	30%	Pass	
sulfidic - TAA equiv. S% pyrite	P18-My21725	CP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
Chromium Reducible Sulfur	P18-My21725	CP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur -acidity units	P18-My21725	СР	mol H+/t	< 3	< 3	<1	30%	Pass	
Sulfur - KCl Extractable	P18-My21725	CP	% S	n/a	n/a	n/a	30%	Pass	
HCI Extractable Sulfur	P18-My21725	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur	P18-My21725	CP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - acidity units	P18-My21725	СР	mol H+/t	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	P18-My21725	СР	% S	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity (ANCbt)	P18-My21725	CP	%CaCO3	0.57	0.54	6.0	30%	Pass	
Acid Neutralising Capacity (ANODI)	1 10-WIYZ 1723		70CaCC3	0.57	0.54	0.0	30 78	1 033	
equivalent S% pyrite (s-ANCbt)	P18-My21725	CP	% S	0.18	0.17	6.0	30%	Pass	
ANC Fineness Factor	P18-My21725	CP	factor	1.5	1.5	<1	30%	Pass	
CRS Suite - Net Acidity (Sulfur Units)	P18-My21725	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
CRS Suite - Net Acidity (Acidity Units)	P18-My21725	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite - Liming Rate	P18-My21725	CP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals		1	1	Result 1	Result 2	RPD			
Aluminium	M18-My22778	NCP	mg/kg	71000	68000	4.0	30%	Pass	
Arsenic	M18-My25782	NCP	mg/kg	2.2	2.3	3.0	30%	Pass	
Barium	M18-My26750	NCP	mg/kg	190	220	14	30%	Pass	
Beryllium	M18-My26750	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M18-My26750	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-My26750	NCP	mg/kg	29	35	18	30%	Pass	
Cobalt	M18-My26750	NCP	mg/kg	11	12	8.0	30%	Pass	
Copper	M18-My26750	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Iron	M18-My22768	NCP	mg/kg	110000	93000	20	30%	Pass	
Lead	M18-My26750	NCP	mg/kg	10	12	14	30%	Pass	
Mercury	M18-My26750	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M18-My26750	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M18-My26750	NCP	mg/kg	16	18	10	30%	Pass	
Selenium	M18-My26750	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Strontium	M18-My26750	NCP	mg/kg	37	40	8.0	30%	Pass	
Zinc	M18-My26750	NCP	mg/kg	11	13	17	30%	Pass	
Duplicate				Doords 4	Boonly 0	DDD			
9/ Maioturo	D10 My04700	CD	0/	Result 1	Result 2	RPD	200/	Desa	
% Moisture	P18-My21726	CP	%	15	14	7.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace N/A Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q08

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

S02 Retained Acidity is Reported when the pHKCl is less than pH 4.5

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period S04

Authorised By

Robert Johnston Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Myles Clark Senior Analyst-Metal (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This document shall be reported used receipt in full and retrietes only to the letters tested. Unless indicated otherwise, the tests were, the full are retrieted in the contract in the standard of the samples as receipt in full and retrieted only the times tested. Unless indicated otherwise, the tests were deadlines and lost production arising from this report. This document shall be retrieted in the samples as receipt in full and retrieted only in the interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to the production arising from the interpretation of the production arising from the interpretation arising from the interpretation arising from the in

Report Number: 598704-S

Enviro Sample WA

From: Enviro Sample Bris

Sent: Tuesday, 5 June 2018 8:56 AM

To: Enviro Sample WA
Cc: Andrew Black

Subject: RE: 5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 598704 :

Site AGRIMIN ASS LAKE (2731)

Thanks for the update.

I'll log in the samples when they get here in Brisbane, with a note to check 598704 for the moisture set

Daniel Clancy
Enquiries Brisbane
Phone: +61.7.2002.461

Phone: +61 7 3902 4611

Email: EnviroSampleQLD@eurofins.com

From: Enviro Sample WA

Sent: Tuesday, 5 June 2018 10:39 AM

To: Enviro Sample Bris

Subject: FW: 5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 598704 : Site AGRIMIN ASS

LAKE (2731)

Hi Dan,

Have located dry samples. Assume wet samples in MEL as per 598704.

Cheers,

Eddy

Eurofins | mgt Unit 2, 91 Leach Highway KEWDALE WA 6105 Australia

Phone: +61 8 9251 9692

Email : EnviroSampleWA@eurofins.com

From: Enviro Sample WA

Sent: Tuesday, 5 June 2018 8:29 AM

To: Enviro Sample Bris **Cc:** Andrew Black

Subject: RE: 5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 598704 : Site AGRIMIN ASS

LAKE (2731)

Hi Daniel,

It was a public holiday over here last week. We will send these over tonight.

Cheers

Eddy

Eurofins | mgt Unit 2, 91 Leach Highway **KEWDALE WA 6105** Australia

Phone: +61 8 9251 9692

Email: EnviroSampleWA@eurofins.com

From: Enviro Sample Bris

Sent: Monday, 4 June 2018 11:09 AM

To: Enviro Sample WA Cc: Andrew Black

Subject: RE: 5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 598704 : Site AGRIMIN ASS

LAKE (2731)

Hi team,

Can you please send us the dry and holds for report 597569, samples My11120,My11121,My11122,My11123 and My11124?

Kind Regards, **Daniel Clancy Enquiries Brisbane** Phone: +61 7 3902 4611

Email: EnviroSampleQLD@eurofins.com

From: Andrew Black

Sent: Monday, 4 June 2018 8:14 AM

To: Enviro Sample Bris

Subject: 5 DAY TAT ADDITIONAL: FW: Eurofins | mgt Test Results, Invoice - Report 598704 : Site AGRIMIN ASS LAKE

(2731)

Hi Team

Additional analysis for CrSuite please.

Many thanks

Andrew Black

Phone: +61 410 220 750

Email: AndrewBlack@eurofins.com

From: Sarah Breheny [mailto:SarahBreheny@360environmental.com.au]

Sent: Friday, 1 June 2018 7:32 PM

To: Robert Johnston

Subject: Re: Eurofins | mgt Test Results, Invoice - Report 598704 : Site AGRIMIN ASS LAKE (2731)

EXTERNAL EMAIL*

Hi Robert.

Can you please organise for further analysis (CRS) For PPUS1-0.02, PPUS2-0.02, PPUS3-0.02, PPUS4-0.02, PPUS5-0.02. Report 598704

Thank you

Sarah.

Sent from my iPhone

On 24 May 2018, at 10:05 am, "RobertJohnston@eurofins.com" < RobertJohnston@eurofins.com > wrote:

Hi Sarah,

Please find attached results and invoice for AGRIMIN ASS LAKE (2731).

My apologies for the delay in these results.

Kind Regards,

Robert Johnston

Analytical Services Manager

Eurofins | mgt

Unit 2, 91 Leach Highway KEWDALE WA 6105 AUSTRALIA

Phone: +61 8 9251 9605

Email: RobertJohnston@eurofins.com Website:environment.eurofins.com.au

EnviroNote 1076 - PFAS Biota

EnviroNote 1074 - Passive Samplers for VOCs in Air

Are you on TOP of PFASs? Find out more by reading Eurofins | mgt's Environote by clicking <u>here</u>

EnviroNote 1075 – for Eurofins | mgt Christmas Shutdown Dates, click here

<598704-S report.pdf>

<2731.598704.Header.xml>

<AGRIMIN ASS LAKE 2731.598704.Chemistry2e.csv>

```
<AGRIMIN ASS LAKE 2731.598704.Sample2e.csv>
<598704-S.xls>
<598704_data.csv>
<598704_COC.pdf>
<598704_sample_receipt_coc.pdf>
<598704_invoice_458792.pdf>
```

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney Unit F3, Building F Tit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brishane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: 360 Environmental

Contact name: Sarah Breheny

AGRIMIN ASS LAKE MACKAY Project name:

Project ID:

COC number: Not provided

Turn around time: 5 Day

Jun 4, 2018 8:14 AM Date/Time received:

Eurofins | mgt reference: 601705

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Sarah Breheny - SarahBreheny@360environmental.com.au.

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: 360 Environmental Address:

10 Bermondsey St West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE MACKAY

Project ID: 2731 Order No.: Received: Jun 4, 2018 8:14 AM Report #: 601705

Due: Jun 11, 2018

Phone: 08 9388 8360 Priority: 5 Day 08 9381 2360

Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								
				271				
	ey Laboratory							
	oane Laboratory					Х	Х	
	n Laboratory - N		36					ļ
Exte	rnal Laboratory	, I		T	T			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	PPUS1-0.02	Apr 23, 2018		Soil	B18-Jn05355	Х	Х	
2	PPUS2-0.02	Apr 23, 2018		Soil	B18-Jn05356	Х	Х	
3	PPUS3-0.02	Apr 23, 2018		Soil	B18-Jn05357	Х	Х	
4	PPUS4-0.02	Apr 23, 2018		Soil	B18-Jn05358	Х	Х	
5	PPUS5-0.02	Apr 23, 2018		Soil	B18-Jn05359	Х	Х	
Test Counts								

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

360 Environmental 10 Bermondsey St West Leederville WA 6007

Attention: Sarah Breheny

601705-S Report

AGRIMIN ASS LAKE MACKAY Project name

Project ID 2731

Received Date Jun 04, 2018

Client Sample ID			PPUS1-0.02	PPUS2-0.02	PPUS3-0.02	PPUS4-0.02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Jn05355	B18-Jn05356	B18-Jn05357	B18-Jn05358
Date Sampled			Apr 23, 2018	Apr 23, 2018	Apr 23, 2018	Apr 23, 2018
Test/Reference	LOR	Unit				
Extraneous Material						
<2mm Fraction	0.005	g	37	69	49	81
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
Chromium Suite (Minus ANC- WA)						
CRS suite WA (-ANC) - Liming Rate	1	kg CaCO3/t	< 1	< 1	< 1	< 1
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	< 10
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
oH-KCL	0.1	pH Units	8.4	7.9	8.2	8.0
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	< 2	< 2	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005	< 0.005	< 0.005	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3	< 3	< 3	< 3
Sulfur - KCI Extractable	0.02	% S	n/a	n/a	n/a	n/a
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	1.7	0.58	0.76	0.94
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	340	120	150	190
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	0.54	0.18	0.24	0.30
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1	< 1	< 1	< 1
% Moisture	1	%	15	16	16	20

Client Sample ID Sample Matrix			PPUS5-0.02 Soil
Eurofins mgt Sample No.			B18-Jn05359
Date Sampled			Apr 23, 2018
Test/Reference	LOR	Unit	
Extraneous Material	•	•	
<2mm Fraction	0.005	g	63
>2mm Fraction	0.005	g	< 0.005
Analysed Material	0.1	%	100
Extraneous Material	0.1	%	< 0.1
Chromium Suite (Minus ANC- WA)		_	
CRS suite WA (-ANC) - Liming Rate	1	kg CaCO3/t	< 1
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	10	mol H+/t	< 10
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	0.02	% S	< 0.02
pH-KCL	0.1	pH Units	8.1
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02
Chromium Reducible Sulfur ^{S04}	0.005	% S	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	< 3
Sulfur - KCl Extractable	0.02	% S	n/a
HCI Extractable Sulfur	0.02	% S	n/a
Net Acid soluble sulfur	0.02	% S	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	0.59
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	120
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	0.19
ANC Fineness Factor		factor	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	< 0.02
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	< 10
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	< 1
% Moisture	1	%	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Extraneous Material	Brisbane	Jun 06, 2018	6 Week
- Method: LTM-GEN-7050/7070			
Chromium Suite (Minus ANC- WA)	Brisbane	Jun 07, 2018	6 Week
- Method: LTM-GEN-7070			
% Moisture	Brisbane	Jun 06, 2018	14 Day

Report Number: 601705-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Page 4 of 7

Company Name: 360 Environmental

Address: 10 Bermondsey St

West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE MACKAY

Project ID: 2731

Date Reported:Jun 08, 2018

Order No.: Received: Jun 4, 2018 8:14 AM

 Report #:
 601705
 Due:
 Jun 11, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins | mgt Analytical Services Manager : Robert Johnston

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								
				71				
		- NATA Site # 1						
		y - NATA Site #				Х	Х	
		NATA Site # 237	36					
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	PPUS1-0.02	Apr 23, 2018		Soil	B18-Jn05355	Х	Х	
2	PPUS2-0.02	Apr 23, 2018		Soil	B18-Jn05356	Х	Х	
3	PPUS3-0.02	Apr 23, 2018		Soil	B18-Jn05357	Х	Х	
4	PPUS4-0.02	Apr 23, 2018		Soil	B18-Jn05358	Х	Х	
5	PPUS5-0.02	Apr 23, 2018		Soil	B18-Jn05359	Х	Х	
Test	Counts					5	5	

Eurofins | mgt 1/21 Smallwood Place, Murarrie, QLD, Australia, 4172

ABN : 50 005 085 521 Telephone: +61 7 3902 4600 Report Number: 601705-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 601705-S

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
LCS - % Recovery									
Chromium Suite (Minus ANC- WA)									
Chromium Reducible Sulfur			%	103			70-130	Pass	
Acid Neutralising Capacity (ANCbt)			%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Chromium Suite (Minus ANC- WA)			Result 1	Result 2	RPD				
CRS suite WA (-ANC) - Liming Rate	B18-Jn03113	NCP	kg CaCO3/t	1.0	1.0	2.0	30%	Pass	
CRS suite WA (-ANC) - Net Acidity (Acidity Units)	B18-Jn03113	NCP	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite WA (-ANC) - Net Acidity (Sulfur Units)	B18-Jn03113	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
pH-KCL	B18-Jn03113	NCP	pH Units	5.4	5.4	<1	30%	Pass	
Acid trail - Titratable Actual Acidity	B18-Jn03113	NCP	mol H+/t	8.7	8.5	2.1	30%	Pass	
sulfidic - TAA equiv. S% pyrite	B18-Jn03113	NCP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
Chromium Reducible Sulfur	B18-Jn03113	NCP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur -acidity units	B18-Jn03113	NCP	mol H+/t	< 3	< 3	<1	30%	Pass	
Sulfur - KCl Extractable	B18-Jn03113	NCP	% S	n/a	n/a	n/a	30%	Pass	
HCI Extractable Sulfur	B18-Jn03113	NCP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur	B18-Jn03113	NCP	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - acidity units	B18-Jn03113	NCP	mol H+/t	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	B18-Jn03113	NCP	% S	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity (ANCbt)	B18-Jn03113	NCP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	B18-Jn03113	NCP	% S	n/a	n/a	n/a	30%	Pass	
ANC Fineness Factor	B18-Jn03113	NCP	factor	1.5	1.5	<1	30%	Pass	
CRS Suite - Net Acidity (Sulfur Units)	B18-Jn03113	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
CRS Suite - Net Acidity (Acidity Units)	B18-Jn03113	NCP	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite - Liming Rate	B18-Jn03113	NCP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B18-My01812	NCP	%	17	18	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

S02 Retained Acidity is Reported when the pHKCl is less than pH $4.5\,$

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period S04

Authorised By

Robert Johnston Analytical Services Manager Myles Clark Senior Analyst-Metal (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Chain of Custody Record

Relinquished by (print name):	Relinquished by Sarah Breheny			Lab Reference		Notes:	Send reports to:	Samples from:	Delivery method:		Send samples to:
Meny 1 635	ah Breheny	MA07	MC36-11	Sample Name							
38				Soil (jar)			labresults@360environmental.com.au sarahbreheny@360environmen	360 Environmental	Courier	Unit 2,	Eurofins MGT
_ s		×	×	Soil (bag)	Matrix		lts@36	vironm		91 Lea	s MGT
Signature	Signature			Water (unfiltered)	Matrix/Container		50envir	ental		ch High	
7, 40	3.			Fibre Cement	iner		onmer 60en	14/00		าway K	
- 0			u	Other			ntal.con	1		ewdale	1
Time:		unknown	unknown	Date			labresults@360environmental.com.au sarahbreheny@360environmental.com.au			Unit 2, 91 Leach Highway Kewdale WA 6105	
aite class	31/05/2018										
81/2/18		×	×	Eotal metals (uranium, thorium, aluminium, iron, arsenic, chromium, cadmium, manganese, nickel, selenium, zinc, Barium, Beryllium, Cobalt, Lead, Molybdenum, Strontium and Mercury)	Sample Analysis		Turn around time:	Details verified by:	Name of samplers:	Project number:	Project name:
3:03 P/N Date:					nalysis		Normal COC Number: 2731-05	Sarah Breheny El IVII OI II I El Lo	Gerry Bradley	2731	Agrimin ASS Lak
								יות וכג		J)

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: 360 Environmental

Contact name: Sarah Breheny AGRIMIN ASS LAKE Project name:

Project ID: 2731

COC number: Not provided

Turn around time: 5 Day

Date/Time received: May 31, 2018 3:03 PM

Eurofins | mgt reference: 601310

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Sarah Breheny - SarahBreheny@360environmental.com.au.

Certificate of Analysis

ilac-MRA

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

360 Environmental 10 Bermondsey St West Leederville WA 6007

Attention: Sarah Breheny

Report 601310-W

Project name AGRIMIN ASS LAKE

Project ID 2731

Received Date May 31, 2018

Client Sample ID Sample Matrix			G01MC36-11 Water	^{G01} MA07 Water
Eurofins mgt Sample No.			M18-Jn02296	M18-Jn02297
Date Sampled			Not Provided	Not Provided
Test/Reference	LOR	Unit		
Heavy Metals				
Aluminium	0.05	mg/L	< 0.5	0.85
Barium	0.02	mg/L	< 0.05	< 0.05
Beryllium	0.001	mg/L	< 0.01	< 0.01
Cadmium	0.0002	mg/L	0.0030	< 0.002
Chromium	0.001	mg/L	< 0.01	< 0.01
Cobalt	0.001	mg/L	< 0.01	< 0.01
Iron	0.05	mg/L	< 0.5	1.3
Lead	0.001	mg/L	0.036	0.033
Manganese	0.005	mg/L	0.18	0.36
Mercury	0.0001	mg/L	< 0.001	< 0.001
Molybdenum	0.005	mg/L	< 0.05	< 0.05
Nickel	0.001	mg/L	< 0.01	< 0.01
Selenium	0.001	mg/L	< 0.01	< 0.01
Strontium	0.005	mg/L	9.1	8.8
Thorium	1	mg/L	1.2	1.0
Uranium	0.005	mg/L	< 0.05	< 0.05
Zinc	0.005	mg/L	0.22	0.079

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Jun 04, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters Solids Soils & Sediments by ICP-MS			
Thorium	Melbourne	Jun 04, 2018	6 Month

- Method: LTM-MET-3040 Metals in Waters by ICP-MS

Report Number: 601310-W

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: 360 Environmental

Address: 10 Bermondsey St

West Leederville

WA 6007

Project Name: AGRIMIN ASS LAKE

Project ID: 2731

 Order No.:
 Received:
 May 31, 2018 3:03 PM

 Report #:
 601310
 Due:
 Jun 7, 2018

 Phone:
 08 9388 8360
 Priority:
 5 Day

Fax: 08 9381 2360 Contact Name: Sarah Breheny

Eurofins														s mg	jt Ana	llytica	al Ser	vices	Manager : Robert Johnston				
		Sa	mple Detail			Aluminium	Barium	Beryllium	Cadmium	Chromium	Cobalt	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Strontium	Thorium	Uranium	Zinc	
	ourne Laborato			71		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	
	ney Laboratory																						
	bane Laborator																						
Perth Laboratory - NATA Site # 23736																							
	rnal Laboratory	1																					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		
1	MC36-11	Not Provided		Water	M18-Jn02296	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
2	MA07	Not Provided		Water	M18-Jn02297	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
Test Counts 2 2										2	2	2	2	2	2	2	2	2	2	2	2	2	1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 601310-W

Page 3 of 7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Heavy Metals								
Aluminium			mg/L	< 0.05		0.05	Pass	
Barium			mg/L	< 0.02		0.02	Pass	
Beryllium			mg/L	< 0.001		0.001	Pass	
Cadmium			mg/L	< 0.0002		0.0002	Pass	
Chromium			mg/L	< 0.001		0.001	Pass	
Cobalt			mg/L	< 0.001		0.001	Pass	
Iron			mg/L	< 0.05		0.05	Pass	
Lead			mg/L	< 0.001		0.001	Pass	
Manganese			mg/L	< 0.005		0.005	Pass	
Mercury			mg/L	< 0.0001		0.0001	Pass	
Molybdenum			mg/L	< 0.005		0.005	Pass	
Nickel			mg/L	< 0.001		0.001	Pass	
Selenium			mg/L	< 0.001		0.001	Pass	
Strontium			mg/L	< 0.005		0.005	Pass	
Uranium			mg/L	< 0.005		0.005	Pass	
Zinc			mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			<u> </u>		,			
Heavy Metals								
Aluminium			%	101		80-120	Pass	
Barium			%	118		80-120	Pass	
Beryllium			%	92		80-120	Pass	
Cadmium			%	96		80-120	Pass	
Chromium			%	99		80-120	Pass	
Cobalt			%	101		80-120	Pass	
Iron			%	99		80-120	Pass	
Lead			%	102		80-120	Pass	
Manganese			%	102		80-120	Pass	
Mercury			%	99		75-125	Pass	
Molybdenum			%	98		80-120	Pass	
Nickel			%	99		80-120	Pass	
			%	102				
Selenium						80-120	Pass	
Strontium			%	106		80-120	Pass	
Thorium			%	99		70-130	Pass	
Uranium			%	97		80-120	Pass	
Zinc	Lab Sample ID	QA Source	% Units	104 Result 1		80-120 Acceptance Limits	Pass Pass Limits	Qualifying Code
Spike - % Recovery		,		•				
Heavy Metals				Result 1				
Aluminium	M18-Jn00399	NCP	%	91		75-125	Pass	
Barium	M18-Jn00399	NCP	%	99		75-125	Pass	
Beryllium	M18-Jn00399	NCP	%	87		75-125	Pass	
Cadmium	M18-Jn00399	NCP	%	100		75-125	Pass	
Chromium	M18-Jn00399	NCP	%	98		75-125	Pass	
Cobalt	M18-Jn00399	NCP	%	100		75-125	Pass	
Iron	M18-Jn00399	NCP	%	93		75-125	Pass	
Lead	M18-Jn00399	NCP	%	103		75-125 75-125	Pass	
		1		94				
Manganese	M18-Jn00399	NCP	%	1		75-125	Pass	
Meldedonus	M18-Jn00399	NCP	%	102		70-130	Pass	
Molybdenum	M18-Jn00399	NCP	%	99		75-125	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	M18-Jn00399	NCP	%	97			75-125	Pass	
Selenium	M18-Jn00399	NCP	%	95			75-125	Pass	
Strontium	M18-Jn00399	NCP	%	96			75-125	Pass	
Uranium	M18-Jn00399	NCP	%	105			75-125	Pass	
Zinc	M18-Jn00399	NCP	%	99			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M18-Jn00399	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Barium	M18-Jn00399	NCP	mg/L	0.03	0.03	2.0	30%	Pass	
Beryllium	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M18-Jn00399	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	M18-Jn00399	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	M18-Jn00399	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	M18-Jn00399	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum	M18-Jn00399	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium	M18-Jn00399	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Strontium	M18-Jn00399	NCP	mg/L	0.042	0.041	3.0	30%	Pass	
Uranium	M18-Jn00399	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	M18-Jn00399	NCP	mg/L	0.022	0.022	1.0	30%	Pass	

Report Number: 601310-W

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

Authorised By

Robert Johnston Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.

Report Number: 601310-W

Sample	Αl	Co	Cr	Fe	Mr	n Ni	Zn	As	
UNITS	%	ppm	ppm	%	рр	m ppm	ppm	рр	m
BLANK 1		-0.01	-1	-5	-0.01	-1	-1	-1	-0.2
S1 - Waste	e	-0.01	2	-5	-0.01	3	20	-1	-0.2
S1 - Waste	e	-0.01	3	-5	-0.01	2	21	-1	-0.2
S2 - Waste	e	-0.01	1	-5	-0.01	2	1	-1	-0.2
Potash		-0.01	1	-5	-0.01	-1	-1	-1	-0.2
Potash Rp	ot	-0.01	1	-5	-0.01	1	1	-1	-0.2
Gannet ST	Γ-	0.22	21	15	1.07	67	28	36	12
STD 1.1		0.2	20	10	1.04	65	26	35	11.8
Gannet ST	Γ-	0.63	6	5	1.78	175	8	39	
STD 2.1		0.63	7	5	1.79	180	8	40	-0.2
Gannet ST	Γ-589								
STD 3.1		0.7	9	10	2.11	211	11	45	0.4
Sample Dr	conor.	ation							

Sample Preparation

No sample preparation was required on these samples.

Analytical Methods

The samples have been digested with Aqua Regia. This partial digest is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

Al Co Cr Fe Mn Ni Zn determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

The samples have been digested with Aqua Regia. This partial digest is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

As Ba Cd Be Hg Mo Pb Th Se determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Special Messages

Ва	Cd		Be	Hg	Mo	Pb	Th	Se	Sr
ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm
	-1	-0.05	-0.001	-0.01	-0.1	-1	-0.02	-1	-0.1
	-1	-0.05	0.001	-0.01	-0.1	-1	-0.02	-1	29
	-1	-0.05	-0.001	-0.01	-0.1	-1	-0.02	-1	28.4
	-1	-0.05	-0.001	-0.01	-0.1	-1	-0.02	-1	28.4
	-1	-0.05	-0.001	-0.01	-0.1	2	0.02	-1	8.3
	-1	-0.05	-0.001	-0.01	-0.1	2	0.02	-1	8.3
	5	-0.05	0.1	-0.01	9.7	36	0.36	-1	6.6
	4	-0.05	0.095	-0.01	9.4	36	0.36	-1	6.5
	37	0.05	0.246	-0.01	34.4	14	13.5	-1	13.7
	47	-0.05	0.253	-0.01	1.1	14	13.1	-1	12.8

Sr U

U

ppm

-0.02

-0.02

-0.02

-0.02

0.12

0.12

0.16

0.16

5.74

5.72

Sample	Al		Со	Cr	Fe	Mn	Ni	Zn	As
UNITS	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L
BLANK 1		-1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-10
MC36-11		-1	-0.5	-0.5	-0.5	-0.5	-0.5	0.5	20
MA07		-1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	10
MA07 Rpt		-1	-0.5	-0.5	0.5	-0.5	-0.5	-0.5	20
BLANK 2		-1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-10
STFUS2		100	10	20	200	20	20	20	
STD 1.1		99	10.5	20	200	20	20	20	
CaMg1000		-1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	
STD 2.1		-1	0.5	-0.5	0.5	-0.5	0.5	-0.5	
Mg10000		4	1		2.5	1.5	1	1	
STD 3.1		3	-0.5	0.5	3	2	1	1.5	
ME SOLN1									
STD 4.1		2	0.5	-0.5	2	-0.5	-0.5	0.5	
Na10000		-1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	
STD 5.1		-1	-0.5	-0.5	0.5	-0.5	-0.5	-0.5	
NA 100000)								
STD 6.1		-1	0.5	-0.5	0.5	-0.5	0.5	0.5	

Sample Preparation

No sample preparation was required on these samples.

Analytical Methods

The solutions have not been treated other than by dilution.

Al Co Cr Fe Mn Ni Zn determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

The solutions have not been treated other than by dilution.

As Ba Cd Be Mo Pb Th Se U determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Special Messages

Ba	Cd	Be	Mo	Pb	Th	Se	U	
ug/L								
	-10	-10	-1	-10	-50	-1	-100	-1
	20	-10	-1	-10	-50	-1	-100	1
	20	-10	-1	10	-50	2	-100	2
	20	-10	-1	10	-50	2	-100	1
	-10	-10	-1	-10	-50	-1	-100	-1

Sai	mple	U	Th	Al	Fe		As	Cr	Cd	Mn
UN	NITS	ug/L	ug/L	mg/L	mg/L		ug/L	mg/L	mg/L	mg/L
BL	ANK 1		-1	-1	-1	-0.5	-10	-0.5	-0.01	-0.5
PP	ASB1 2	6,	6	-1	-1	-0.5	70	-0.5	-0.01	2.5
PP	ASB2 2	6,	3	-1	1	-0.5	60	-0.5	-0.01	1.5
PP	ASB3 2	6,	4	-1	1	-0.5	50	-0.5	-0.01	-0.5
	ASB4 20		2	-1	1	-0.5	100	-0.5	-0.01	-0.5
PP	ASB4 2	6,	2	-1	-1	-0.5	90	-0.5	-0.01	-0.5
BL	ANK 2		-1	-1	-1	-0.5	-10	-0.5	-0.01	-0.5
ST	FUS2				100	200		20		20
ST	D 1.1				97	202		20		20
Ca	Mg100	0			-1	-0.5		-0.5		-0.5
ST	D 2.1				1	0.5		-0.5		-0.5
M	g10000				4	2.5				1.5
ST	D 3.1				3	2.5		-0.5		2
S 1	.0000K									
ST	D 4.1				2	0.5		-0.5		-0.5
M	E SOLN1	1								
ST	D 5.1				1	1		-0.5		-0.5
Na	10000				-1	-0.5		-0.5		-0.5
ST	D 6.1				1	-0.5		-0.5		-0.5
NΑ	10000	0								
ST	D 7.1				1	0.5		-0.5		-0.5
Sai	mple Pr	eparati	on							

Sample Preparation

No sample preparation was required on these samples.

Analytical Methods

The solutions have not been treated other than by dilution.

U Th As Cd Se Ba Be Co Pb determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

The solutions have not been treated other than by dilution.

Al Fe Cr Mn Ni Zn determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

Special Messages

Ni		Se	Zn		Ва	Be		Со	Pb		Мо	Sr
mg/L		mg/L	mg/l	_	mg/L	ug/L		mg/L	ug/L		mg/L	mg/L
	-0.5	-	-0.1	-0.5	-0.01		-1	-0.0	1	-50	-0.01	-0.005
	-0.5		0.2	-0.5	0.03		-1	-0.0	1	250	0.06	6.04
	-0.5	-	-0.1	-0.5	0.02		-1	-0.0	1	150	0.03	9.08
	-0.5	-	-0.1	-0.5	0.02		-1	-0.0	1	-50	-0.01	9.19
	-0.5		0.2	-0.5	0.02		-1	-0.0	1	100	0.02	9.29
	-0.5		0.2	0.5	0.02		-1	-0.0	1	100	0.02	9.42
	-0.5	-	-0.1	-0.5	-0.01		-1	-0.0	1	-50	-0.01	-0.005
	20			20								
	20			20.5								
	-0.5			-0.5								
	1			-0.5								
	1			1								
	-0.5			1.5								
	-0.5			-0.5								
	-0.5			0.5								
	-0.5			-0.5								
	-0.5			-0.5								
	-0.5			-0.5								

Mo Sr Hg

Hg mg/L -0

-0.001

0.007

0.003

-0.001

-0.001

-0.001

-0.001