GRAEME CAMPBELL & ASSOCIATES PTY LTD

Specialists in Materials Characterisation

Integrated Geochemical and Physical Testing Service for Bedrocks, Regoliths and Soils of Diverse Lithological, Alteration and Weathering Assemblages

P.O. Box 247, Bridgetown, Western Australia 6255 Phone: (61 8) 9761 2829 E-mail: <u>gca@wn.com.au</u> ACN 061 827 674 ABN 37 061 827 674

Testing Laboratory: Unit B, 15 Rose Street, Bridgetown, WA 6255

1901/4

COMPANY:	Audalia Resources Limited
ATTENTION:	Geoffrey Han
FROM:	Graeme Campbell DRAFT
SUBJECT:	Medcalf Project: Responses to DWER Comments re. Environmental Geochemistry of Mining-Streams Containing Vanadiferous Fe/Ti-Oxides
NO. PAGES (including this	Dage): 3 DATE: 21st September 2021

Geoffrey,

The following are our responses to comments from DWER concerning potential environmental implications from the weathering of vanadiferous Fe/Ti-oxides variously contained in the mining-streams to be generated during the Project.

1.0 "POTENTIAL FOR THE RELEASE OF BIOAVAILABLE VANADIUM FROM MINE WASTE MINERALS"

A number of points were made by DWER under the above sub-heading.

1.1 Solubility & Bioavailability

DWER raise potential concerns for the deleterious formation and release of vanadate (i.e. V-oxyanion with vanadium in the pentavalent oxidation state) through photo-induced transformations of V(III) / V(IV) forms resident within crystal structures of vanadiferous titano-magnetites, etc.

In the comprehensive review by Gustafsson (2019), it is highlighted that vanadate binds to the surfaces of Fe-, Al-, and Ti-oxyhydroxides with an affinity **stronger than** that of ortho-phosphate renowned for its "fixation" by sesquioxides in Australian soils (Probert 1983).

It is noted that the research-papers provided by DWER for review focus on the 'release-to-solution' aspect of weathering of vanadiferous titano-magnetites. This is only the

'source-term' component of vanadate environmental geochemistry in a manner similar to quantifying the dissolution characteristics of phosphatic fertilizers.

However, in assessing the effectiveness of phosphatic fertilizer application for crops and pastures, the 'sink-term' is decisive is determining how much fertilizer needs to be applied, due to strong interactions of the high-affinity, poorly-reversible type between phosphate and the surfaces of sesquioxides and clays. In a similar fashion, and through essentially the same type of mechanisms (viz. chiefly ligand-exchange reactions involving surface-hydroxyl functions groups on mineral-surfaces), vanadates will be effectively "fixed" by both sesquioxides and clays which abound within the mining-streams to be generated during the Project (GCA 2020a,b).

1.2 Dust

Though difficult to quantify *a priori*, it is noted that the high SG value (*ca.* 5.0+ g/cm3) of the vanadiferous titano-magnetites will constrain their contribution to the 'dust-loading' generated during operations for the Project.

1.3 Reactive-Oxygen Species (ROS)

DWER notes that the ROS (e.g. hydroxyl radical) generation via photo-chemical reactions involving the surfaces of Fe-oxyhydroxides has potential to be harmful to plants through induced oxidation stress.

GCA notes that highly ferruginous ("red-brown") soils and duricrusts hosting vegetation rooting-zones abound within the Australian interior for a myriad of arid-land ecosystems from early in the Quaternary (0-2.5 million years bp) (Viscarra Rossel *et al.*, 2010). In this respect, the Medcalf site is thus <u>not</u> fundamentally different.

2.0 "RECOMMENDED ADDITIONAL GEOCHEMICAL TEST-WORK"

A number of points were made by DWER under the above sub-heading.

GCA concurs with the DWER generic comments re. undertaking weathering testwork <u>during the active-lifetime</u> of the Project to confirm (or refine if needed) the expectations above for the environmental geochemistry of the vanadiferous titano-magnetites variously admixed with abundant sesquioxides and clays within the mining-streams to be generated during the Project.

3.0 CLOSING

I trust the above is useful to you.

Regards,

Dr GD Campbell Director

REFERENCES:

Graeme Campbell and Associates Pty Ltd, 2020a, "Medcalf Project: Characterisation of Mine-Waste Samples from Vesuvius, Fuji, Egmont, and Pinatubo Pits – Implications for Mine-Waste Management", unpublished report prepared for Audalia Resources Limited

- Graeme Campbell and Associates Pty Ltd, 2020b, "Medcalf Project: Geochemical Characterisation of Slurry Samples of Deslimed-Tailings and Gravity-Reject-Tailings and Implications for Tailings Management", unpublished report prepared for Audalia Resources Limited
- Gustafsson JP, 2019, "Vanadium geochemistry in the biogeosphere speciation, solid-solution interactions, and ecotoxicity", *Applied Geochemistry*, <u>102</u>:1-25
- Probert ME, 1983, "The sorption of phosphate by soils", Chapter 29, pp. 427-435 in "Soils: An Australian Viewpoint", CSIRO, Melbourne
- Viscarra Rossel RA, Bui EN, de Caritat P, and McKenzie NJ, 2010, "Mapping iron oxides and the color of Australian soil using visible-near-infrared spectra", *Journal of Geophysical Research*, <u>Volume 15</u>, F04031, 13 pp.