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Abstract 

The banded ironstone formation (BIF) ranges of semi-arid Western Australia host a diverse 

and endemic flora. The ecological requirements of these plants are not well understood, a 

problem that is exacerbated by a lack of knowledge of the role of topography in shaping 

local-scale plant distributions in semi-arid settings. We built species distribution models to 

identify topographic and geochemical conditions defining range boundaries of eighteen 

conservation-significant plant species on the Helena and Aurora Range (HAR) and surrounds, 

and determine the locations where each species is likely to occur. Using maximum entropy 

modelling, we performed species-specific tuning of model settings by varying model 

complexity and a penalty term to minimise over-fitting. The spatial variation in predicted 

habitat suitability differed between species, though high-suitability habitat for several taxa 

was generally concentrated on the topographically complex HAR. Threatened species were 

restricted near the ridgelines of ironstone summits. In contrast, suitable habitat for species 

of lower conservation significance is further from the ridgeline and more widespread across 

mid and low-elevation hillslopes and at specific locations on the surrounding plains. The 

primary mechanism involved in topographic control of these patterns was attenuation of 
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incident solar radiation, whereby heat stress experienced by plants is reduced, presumably 

creating local differences in evaporation and evapotranspiration. Plant species of lower 

conservation significance are tolerant of a broader spectrum of topographic and 

geochemical conditions than threatened taxa which are restricted to the well-drained, high 

elevation zone. The mapped variation in predicted habitat suitability for species can 

contribute to time and cost-effective biological surveys by targeting survey effort at habitats 

most likely to be important for species of interest. Our findings provide a preliminary insight 

into environmental tolerances of rare ironstone plant species, indicating the potential 

topographic and geochemical conditions necessary for their establishment and persistence. 

 

Key words: Banded ironstone formations; conservation planning; ecological rehabilitation; 

endemism; environmental niche modelling; maximum entropy; model complexity; species 

distribution modelling; true skill statistic 
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Introduction 

Relatively little is known about the role of micro-topographic factors in determining 

vegetation patterns at the local scale of individual hillslopes in arid and semi-arid 

environments (Moeslund et al., 2013). In particular, few studies have specifically 

investigated the topographic determinants of multiple, conservation-significant plants in a 

semi-arid, rocky environment. The banded ironstone formation (BIFs) ranges of semi-arid 

Western Australia are ancient, sedimentary rock formations that exhibit high micro-

topographic complexity (Gibson et al., 2012; Nistelberger et al., 2014). These distinctive 

formations host a diverse and endemic flora (Hopper & Gioia, 2004; Gibson et al., 2010) and 

are the dominant features in an otherwise subdued and predominantly flat landscape (Fig. 

1). 

Topography moderates heat and moisture, creating a range of micro-climates 

(Anderson & Ferree, 2010), potentially at small geographic scales (O'Brien et al., 2000). The 

high topographic complexity of ironstone formations may have a greater influence on 

structuring vegetation communities in arid areas where moisture is a limiting factor, than in 

environments with fewer constraints on plant growth. In environments where rock 

substrates experience intense solar radiation, rapid moisture loss and shallow soil cover 

(Coates & Kirkpatrick, 1992), topographic features such as slopes of varying aspect, fissures 

and depressions offer protection from insolation (Bennie et al., 2008), causing differences in 

evaporation and evapotranspiration. Topography controls surface hydrology, influencing 

drainage, and sediment transport and deposition. Depressions and fissures are also 

important for trapping moisture and for the deposition of dispersed seeds (Larson et al., 

2000). Micro-topographic variation facilitates the availability of nutrients (Bruland & 
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Richardson, 2005; Araya et al., 2011; Simmons et al., 2011) and soil accumulation (Kuntz & 

Larson, 2006). 

Species distribution models (SDMs) correlate environmental conditions with species 

occurrences to determine their ecological requirements (Vetaas, 2002; Guisan & Thuiller, 

2005; Robinson et al., 2010). They can also be used to predict variation in the relative 

suitability of habitat across geographic space. SDMs have been applied to identify sites of 

high potential occurrence of rare species (Engler et al., 2004) and suitable locations for 

species reintroduction (Pearce & Lindenmayer, 1998). Here, we build SDMs for eighteen 

conservation-significant plant species on the Helena and Aurora Range (HAR) in semi-arid 

Western Australia, which exhibits high plant diversity and endemism at comparatively small 

spatial scales (Gibson et al., 2012). Understanding the specific microhabitat requirements of 

individual ironstone taxa is potentially important both to conservation and rehabilitation 

ecology.  

We address three main aims: 1) what are the topographic and geochemical 

conditions that define the ranges of conservation-significant plant species on the HAR and 

surrounding plains? This will determine the relative importance of geophysical conditions to 

influencing the distribution of species; 2) where is each species most likely to occur at fine 

spatial scale? This can potentially identify locations where new populations of species of 

interest are likely to be found; 3) do plant species at higher risk of extinction have similar 

topographic determinants, and how might these differ for plants of lesser conservation 

significance? Furthermore, the output from these models can be used to create spatially 

explicit predictions of varying habitat suitability for each species. This will help to determine 

likely current distributions, including areas not previously targeted for sampling. 
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Method 

Study area 

The study area comprises the HAR and the surrounding BIFs and plains, a total area of 1605 

km2. The HAR is located in the south-western Australian Floristic Region (SWAFR) 400 km 

north-east of Perth, the main metropolitan centre of Western Australia (Fig. 2). This area 

experiences a semi-arid Mediterranean climate with annual rainfall ranging from 250 to 300 

mm, and high inter-annual variation (BOM, 2015). Surface temperatures are typically high, 

frequently reaching 40˚C during summer. The approximate surface area of the HAR is 52 

km2. The HAR comprises BIF outcrop, duricrust and talus slopes surrounded by outwash and 

sand plains (Hocking et al., 2007). BIFs are Archean sedimentary rocks comprising repeated 

bands of iron oxides, alternating with layers of shale and chert. The highest point of the 

range is 702 m above sea level (asl), approximately 200 m above the predominately flat 

surrounding plains. 

Plant data 

The plant data consist of 25,077 species occurrences, comprising eighteen conservation-

significant plant species in 11 families and 14 genera (Table 1). Targeted surveys of 

conservation significant taxa covered the topographical, geographical and floristic variation 

of the region, with survey transects covering all habitat types. Sampling was conducted 

between 2006 and 2014. Records with uncertain taxonomic status or that were spatially 

inaccurate were excluded from analyses. The most intensive survey effort was focused on 

the BIF summits (for GPS-logged transects see Supplementary Materials Figure S1; S2 for 

locations of species occurrences). As of January 2016, three species are designated as 
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threatened (T), i.e. specially protected under Schedule 1 of the Wildlife Conservation Act 

1950 (Western Australia) and listed under the Environment Protection and Biodiversity 

Conservation Act 1999 (Commonwealth) – ‘the EPBC Act’. Tetratheca aphylla subsp. aphylla 

and Tetratheca harperi are listed as vulnerable (VU) under both pieces of legislation because 

they face a high risk of extinction in the wild and meet IUCN criteria C2a; D1+2 and D2, 

respectively (see IUCN (2001) for an explanation of these criteria). Leucopogon spectabilis is 

critically endangered (CR - facing an extremely high risk of extinction in the wild under the 

Wildlife Conservation Act 1950; listed as CE – critically endangered under the EPBC Act) and 

meets IUCN criteria B1ab(iii; v) and 2ab(iii; v). Plant species potentially under threat, but 

either not meeting survey criteria, or data are deficient to enable listing under the Wildlife 

Conservation Act 1950 are added to Priority Flora Lists (Priorities 1 to 3) by the Western 

Australian Department of Parks and Wildlife (DPaW) in order of precedence for survey and 

evaluation of conservation status. Priority 4 species are adequately surveyed, are rare but 

not threatened, or meet criteria for near threatened, or have been removed from 

threatened species or protected flora lists for other than taxonomic reasons (DPaW, 2015).  
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Table 1. The threatened and priority plant species analysed. See main text for explanation of Western Australian Government conservation status and 
ranking codes; IUCN criteria are listed at: http://www.iucnredlist.org/technical-documents/categories-and-criteria/2001-categories-criteria. 

Family Species Observations 
Conservation 

Status (Ranking) 

Fabaceae Acacia adinophylla 2061 P1 

Fabaceae Acacia shapelleae Maslin 84 P1 

Myrtaceae Baeckea sp. Bungalbin Hill (B.J. Lepschi & L.A. Craven 4586) 66 P3 

Proteaceae Banksia arborea 3945 P4 

Euphorbiaceae Beyeria rostellata 47 P1 

Myrtaceae Eucalyptus formanii 108 P4 

Proteaceae Grevillea erectiloba 324 P4 

Proteaceae Grevillea georgeana 1407 P3 

Dilleniaceae Hibbertia lepidocalyx subsp. tuberculata 2813 P3 

Cyperaceae Lepidosperma bungalbin 751 P1 

Cyperaceae Lepidosperma ferricola 250 P3 

Ericaceae Leucopogon spectabilis 232 T (CR) / T (CE) 

Fabaceae Mirbelia ferricola 1014 P3 

Poaceae Neurachne annularis 3924 P3 

Lamiaceae Spartothamnella sp. Helena & Aurora Range (P.G. Armstrong 155-109) 120 P3 

Rhamnaceae Stenanthemum newbeyi 5974 P3 

Elaeocarpaceae Tetratheca aphylla subsp. aphylla 1884 T (VU) 

Elaeocarpaceae Tetratheca harperi 72 T (VU) 

    25076   

http://www.iucnredlist.org/technical-documents/categories-and-criteria/2001-categories-criteria
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Environmental variables 

Elevation data sources 

We used three sources of elevation data to generate 2 m digital elevation models (DEM), 

subsequently mosaicked into a composite DEM from which all topographic predictors were 

derived (Fig. 2):  

1) LiDAR data was acquired for the vast majority of the study area (~1524 km2 delineated by 

red in Fig. 2) from five fixed wing aircraft sorties. The LiDAR point data have vertical and 

horizontal accuracies of 0.2 m and 0.4 m respectively. A 2 m resolution DEM was 

interpolated using a natural neighbour interpolation algorithm applied to ca 75 million last 

return spot heights. 

 

2) A separate aerial survey flown over the north-west of the study area (~69 km2 delineated 

by blue in Fig. 2) measured spot heights at 0.1 m resolution using a radar altimeter with 

vertical accuracy of 0.3 m. Ground heights were calculated by subtracting these spot heights 

from differential global positioning system (GPS) height readings. We used a 2 m resolution 

DEM previously interpolated from these data using a bicubic spline algorithm in analyses. 

 

3) A 5 m DEM covering the remaining 12 km2 (0.75%) of the study area without either LiDAR 

or radar coverage was derived by photogrammetry sourced from digital aerial photography 

that was flown for coverage of 1:100,000 map sheets. Vertical accuracy for 90% of these 

data is within +/- 1.5 m. However, we observed considerable noise in this DEM that could 

not be rectified. This DEM was resampled to 2 m resolution.  
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Predictive variables 

Initially fifteen predictive topographic variables were derived from the DEM. Curvature 

represents the degree to which the slope deviates from a plane. Natural slopes are generally 

concave and limit the loss of sediment from the slope (as opposed to linear slope profiles). 

Slope influences surface water flow and is therefore related to soil moisture and 

development, with gentler surfaces having higher soil moisture. We used the ArcGIS 

software (ESRI, 2014) to calculate the solar radiation incident on the surface for 2014 (in 

watt hours per m2) using monthly intervals for calculations. Topographic wetness indices 

(TWI) describe the geographic distribution of saturation for runoff generation as a function 

of upslope catchment area and slope angle. Essentially, TWI characterises how micro-

topography controls hydrological processes and affects local patterns of moisture and 

surface saturation. TWI was calculated as per equation 1 (Moore et al., 1993): 

 

a
TWI ln

tan

 
  

                    (Eq. 1) 

 

Where a is a continuous flow accumulation surface (catchment area) in m2. This is 

the upslope contributing area per unit contour length, indicating the area flowing to a 

specific location and β is the local slope angle in radians, measuring the potential drainage. 

Choice of algorithm to calculate catchment area (a) can affect performance of the TWI in 

different geographic settings (Sorensen et al., 2006; Kopecky & Cizkova, 2010). We thus 

tested the performance of three TWIs, where each was generated from an input catchment 

area calculated using either the D-infinity (Tarboton, 1997), Multiple Flow Direction (MFD) 
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(Freeman, 1991) or Multiple Triangular Flow Direction (MTFD) algorithms (Seibert & 

McGlynn, 2007). 

Soil geochemical data were obtained from version 1 of the Australian soil pH, total 

phosphorus and total nitrogen products of the Soil and Landscape Grid of Australia (Viscarra 

Rossel et al., 2014). These surfaces express the estimated percentage content of N and P 

and variation in pH per ~90 m × 90 m grid cell and have a temporal coverage from ~1950-

2013. These rasters were generated using decision trees with piecewise linear models and 

kriging of residuals developed from soil site data (Viscarra Rossel et al., In preparation). We 

used only pH, N and P values at a depth of 0 to 5 cm and resampled these to 2 m resolution. 

We removed TWIs derived from the MTFD and DInfinity layers a priori because initial 

correlation analyses revealed they were less effective predictors of species distributions 

than the MFD-derived TWI. We tested for global multicollinearity between the remaining 

predictors using correlation analyses and removed the minimum subset necessary to ensure 

that all variables had r2 < 0.60. The highest, pairwise correlation between the remaining 

variables was between the DEM and slope (r2 = 0.45). This left eight environmental 

predictors used in all models: curvature, elevation (m), slope (radians), solar radiation (watt 

hours per m2), topographic wetness index (TWI), nitrogen (%), phosphorous (%) and pH. 

Climatic variables were not considered, because at the scale that these surfaces are 

generated (e.g. Worldclim), each layer shows negligible change across this study area. We 

noted that slope and all measures of elevation heterogeneity were strongly correlated (r2 = 

0.94 to 0.98). 
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Modelling approach 

We treated the plant species occurrence records as presence-only data. We used maximum 

entropy modelling ‘maxent’ (Phillips et al., 2006; Phillips & Dudik, 2008) version 3.3.3k to 

relate occurrences for individual priority and threatened plant species to the environmental 

variables. Maxent performs consistently well with presence-only data in comparison to 

other contemporary modelling methods (Elith et al., 2006; Hernandez et al., 2006; Wisz et 

al., 2008; Tittensor et al., 2009). It estimates the potential geographic distribution of a 

species by finding the probability distribution of maximum entropy, which is the distribution 

closest to uniform, subject to the environmental constraints derived from the species 

occurrence data. These constraints require the mean of each environmental variable under 

the predicted distribution to be close to the empirical average over the observed sample. A 

sample of the cells comprising the study area, ‘background points’, represents the space 

over which the maximum entropy probability distribution is defined (Phillips et al., 2006). 

During model generation, background points are compared with species occurrence 

data to differentiate environmental conditions under which a species can potentially occur. 

By default, the maxent model applies a prior expectation that a species is equally likely to 

occur anywhere within the study area. Consequently, each location within the complete 

study area extent has an equal chance of being selected as a background point (Merow et 

al., 2013). However, the specification of this background selection can also be manipulated. 

One approach is that the background sample should be selected so as to best characterise 

the environmental conditions that one wishes to differentiate (Merow et al., 2013). Thus, 

we built two different classes of model, where each class uses a different background 

selection method. Background points were sampled from the entire study area, 
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‘unconstrained background selection’, to investigate how habitat favourable to each species 

(based on topographic and geochemical predictive variables) differs from non-favourable 

habitat (aim 1). Background selection was also enforced using ‘bias files’ to model locations 

where each species is presently likely to occur (aim 2). This is ‘constrained background 

selection’. This was done to restrict selection of background points to occupied locations, 

thus capturing a narrower range of environmental conditions to the above model class. This 

avoids sampling background points from habitat greatly outside of a species geographic 

range (Yates et al., 2010; Elith et al., 2011; Merow et al., 2013). Hence, when building 

models for each species, we restricted the selection of background data to observed point 

occurrences of the relevant species, plus a radius of 300 m around each of these points. We 

assume that dispersal is not a limiting factor within this study area. 

Species-specific calibration of model settings  

Maxent creates different mathematical transformations of each environmental variable and 

then uses these functions to model the environmental requirements of the target species. A 

linear transformation is the mean of the variable (thus the mean of an environmental 

condition where a species is predicted to occur is an approximate match to the mean value 

where it is observed to occur). A quadratic function is the square of a predictive variable. 

When a quadratic transformation is used together with a linear feature, this models a 

species’ tolerance for variation from optimal conditions (Anderson & Gonzalez Jr, 2011). A 

hinge feature has a value of zero below a given threshold, but this value increases according 

to a continuous linear function once the threshold is exceeded. Using both linear and hinge 

features together is redundant (Elith et al., 2011).  
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For each species, we varied model complexity by calibrating models either with 

linear features only, both linear and quadratic features, hinge features only, and both hinge 

and quadratic features. Then for each level of model complexity, we varied the degree to 

which the models are penalised to reduce over-fitting by changing the regularisation 

parameter (a penalty term applied equally to all feature classes). For each feature type 

setting, the following regularisation parameters were tested: 0.5, 0.75, 1 (the default 

setting), 2, 3, 5, 7 and 9. Thus, 32 separate models were built and evaluated for each of the 

eighteen species, for each class of model. 

We assessed model performance by calculating the true skill statistic (TSS) for each 

model configuration (Allouche et al., 2006). TSS is a threshold-dependent measure of model 

accuracy. It is similar to the Kappa statistic, a commonly used threshold-dependent measure 

of model accuracy (Fielding & Bell, 1997), except TSS is not sensitive to species prevalence. 

We used the 10 percentile training presence threshold calculated by maxent as the 

threshold criterion (Tinoco et al., 2009; Jarnevich & Reynolds, 2011). The test area under the 

receiver operating characteristic curve (AUC) score is often used to evaluate the 

performance of models generated by maxent, but AUC scores have the limitation that they 

are correlated with area size as well as species prevalence (Lobo et al., 2008). Consequently, 

we used TSS scores generated by each model configuration to select the feature and 

regularisation settings for a definitive model for each species. 

For all maxent models, logistic output was generated and the following parameters 

altered from their default settings: 5000 maximum iterations (the number of iterations of 

the optimisation algorithm before training is stopped), with a 25% random test percentage. 

All variables are continuous. The default values were used for the remaining parameters. 

We performed five-fold cross-validation to estimate model performance.  
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Results 

Model type 1: unconstrained ‘default’ background selection 

 

TSS scores were high (mean = 0.848; SD = 0.090), indicating accurate model predictions 

(Landis & Koch, 1977) (Table 2). In the majority of cases, regularisation values higher than 

the default setting of one produced superior model performance. A combination of 

quadratic and hinge feature classes also tended produced better performing models. AUC 

scores against the test data were also high (> 0.85 in all cases). 

Table 2. Highest true skill statistic (TSS) scores for each plant species model, and the corresponding 

feature classes and regularisation parameters. QH = quadratic and hinge features; L = linear feature; 

LQ = linear quadratic features.  

Species Highest TSS 
Feature 
Class(es) 

Regularisation 
Parameter 

Acacia adinophylla 0.843 QH 0.50 

Acacia shapelleae Maslin 0.944 L 9.00 

Baeckea sp. Bungalbin Hill BJ Lepschi  0.768 QH 1.00 

Banksia arborea 0.888 QH 1.00 

Beyeria rostellata 0.724 QH 2.00 

Eucalyptus formanii 0.859 QH 2.00 

Grevillea erectiloba 0.868 QH 2.00 

Grevillea georgeana 0.877 LQ 1.00 

Hibbertia lepidocalyx subsp tuberculata 0.900 QH 5.00 

Lepidosperma bungalbin 0.918 LQ 5.00 

Lepidosperma ferricola 0.837 QH 2.00 

Leucopogon spectabilis 0.875 L 5.00 

Mirbelia ferricola 0.892 H 3.00 

Neurachne annularis 0.800 H 0.75 

Spartothamnella sp. Helena Aurora Range 0.563 QH 1.00 

Stenanthemum newbeyi 0.879 QH 5.00 

Tetratheca aphylla subsp aphylla 0.901 QH 5.00 

Tetratheca harperi 0.932 QH 3.00 
 

The relative contribution of each environmental predictor to increasing goodness-of-fit of 

the models generated varies for each species (Table 3). However, in all cases (except S. sp. 

Helena Aurora Range) either elevation or slope are the predictors with the largest influence. 
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Curvature has a negligible effect on any model, surprising, given that this variable identifies 

rapid changes in slope and aspect. Splitting curvature into its constituent parts (plan and 

profile) did not alter this outcome. Solar radiation and TWI make a substantial contribution 

to model gain only for Beyeria rostellata and Grevillea georgeana respectively.  

Model type 2: limited background selection 

 

The TSS scores generated for models employing restricted/constrained background 

selection are lower (mean = 0.541; SD = 0.099). A TSS of > 0.6 is considered good, 0.2–0.6 

fair to moderate; <0.2 poor (Landis & Koch, 1977). TSS scores were low for four species only 

(A. adinophylla, A. shapelleae Maslin, B. sp. Bungalbin Hill and S. sp. Helena and Aurora 

Range) (mean = 0.159; SD = 0.129). Hence we revert to the default, unconstrained models 

for these four taxa only and disregard the background constrained versions. 

 Generally, elevation and slope again make the largest overall contributions to model 

gain (Table 3), though in several instances the contribution of slope is reduced relative to 

the unconstrained models. Solar radiation makes a considerably larger relative contribution 

for many species (e.g. L. bungalbin and L. ferricola) than was the case for the corresponding 

unconstrained models. 
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Table 3. The estimated relative contribution of each environmental predictor to increasing the gain (goodness-of-fit) for both model types (background 

selection unconstrained versus selection constrained) generated for each species, where the default background selection was used. NA = constrained 

model not generated for this species, because the true skill statistic score was too low; hence we revert to the unconstrained model for these species. 

Species 
Variable % Relative Contribution (unconstrained background model / constrained model) 

 
Elevation Slope 

Solar 
Radiation 

TWI Curvature N P pH 

A. adinophylla 17.6 NA 75.1 NA 0.3 NA 0.2 NA 0.0 NA 1.5 NA 1.0 NA 4.1 NA 

A. shapelleae Maslin 63.9 NA 21.4 NA 1.2 NA 0.9 NA 0.0 NA 12.3 NA 0.0 NA 0.2 NA 

B. sp. Bungalbin Hill 49.5 NA 2.9 NA 0.0 NA 0.1 NA 0.1 NA 9.2 NA 28.0 NA 10.3 NA 

B. arborea 3.0 16.5 95.6 64.4 0.0 3.2 0.3 0.2 0.0 0.0 0.2 5.0 0.4 1.7 0.5 9.1 

B. rostellata 23.0 10.5 63.4 0.0 9.5 16.5 0.5 1.6 0.0 0.0 0.7 1.0 0.8 8.2 2.1 62.2 

E. formanii 83.1 50.3 0.0 3.3 3.8 5.2 0.1 0.3 0.1 0.0 0.6 3.2 1.9 27.3 10.3 10.3 

G. erectiloba 48.3 71.2 39.3 2.2 0.4 2.2 0.0 0.3 0.0 0.0 1.6 13.2 3.7 6.8 6.6 4.1 

G. georgeana 61.1 41.4 24.5 46.8 0.2 6.7 10.6 0.0 0.1 0.0 0.0 3.3 0.6 0.2 2.8 1.7 

H. lepidocalyx subsp tuberculata 4.4 16.3 91.9 54.3 0.0 2.2 0.0 0.7 0.0 0.0 0.5 1.2 0.2 7.4 3.0 18.0 

L. bungalbin 72.8 22.6 14.0 4.8 1.3 36.9 3.8 0.1 0.0 0.1 3.0 2.7 3.0 14.5 2.2 18.4 

L. ferricola 5.5 15.1 76.5 0.8 0.1 45.0 0.0 1.0 0.0 0.0 0.7 1.7 17.2 33.9 0.0 2.4 

L. spectabilis 16.1 6.2 60.2 30.4 1.6 14.3 0.0 1.6 0.2 1.2 1.5 6.7 20.2 29.8 0.4 9.7 

M. ferricola 4.9 27.6 90.2 19.7 0.1 26.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.5 3.7 15.4 

N. annularis 3.6 10.4 89.7 66.0 0.0 0.9 0.0 0.1 0.0 0.1 0.7 1.5 5.3 19.2 0.8 1.8 

S. sp. Helena Aurora Range 32.4 NA 3.2 NA 4.3 NA 1.0 NA 0.0 NA 3.6 NA 14.4 NA 41.2 NA 

S. newbeyi 8.2 12.1 85.4 31.1 0.0 5.7 0.0 0.4 0.0 0.0 0.0 0.6 1.5 4.3 4.9 45.8 

T. aphylla subsp aphylla 22.7 69.5 74.4 12.0 0.0 4.5 0.0 0.3 0.0 0.3 0.0 1.3 2.4 2.8 0.5 9.4 

T. harperi 93.8 6.5 1.4 12.4 2.7 5.7 0.4 5.3 0.0 7.3 0.3 1.0 0.4 57.9 1.1 3.8 
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Maps of model predictions for constrained and unconstrained models 

Model prediction maps express habitat suitability of each location in the study area (i.e. 

each 2 × 2 m grid cell) as a function of environmental variables at each location. A high value 

of the function at a particular location indicates that it is predicted to provide suitable 

topographic/geochemical conditions for a given species. The computed model is a 

probability distribution over all grid cells. The maps use colours to show the predicted 

probability that environmental conditions are suitable, with warmer colours (red, orange 

and yellow) indicating a higher probability of suitable environmental conditions for a given 

species, green indicating conditions typical of those where the species is found, and blue 

shades indicating low predicted probability of suitable conditions. 

The maps of model predicted habitat suitability show substantial variation between 

species and also between the background constrained and unconstrained models. For 

brevity, we present the results only for selected species. Maps for species not discussed 

here are presented in the Supplementary Materials (Fig. S3-S54).  We also assess the ways in 

which topographic determinants are similar for ‘rarer’ species, i.e. all threatened and 

priority one taxa and how this differs to the topographic influence on all priority three and 

four taxa. 

For T. aphylla subsp. aphylla, the model employing unconstrained background 

selection (i.e. model type 1) predicts that habitat conditions are suitable across the mid-to-

high slopes of the HAR, with minimal variation in predicted suitability on the high-slopes 

(Fig. 3-4). In contrast, the model with restricted background selection produces predicted 

suitabilities that are considerably more spatially restricted and located closer to the HAR 

ridgeline (Fig. 6-7). Also, whilst habitat suitability is identified as favourable on the mid-
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slopes, the predicted magnitude is lower than for the Type 1 model. For both model types, 

predicted suitability is low across the plains surrounding the HAR. Note that both model 

types predict minimal differences in the favourability of habitat on north and south-facing 

slopes. 

In contrast to T. aphylla subsp. aphylla, models for L. bungalbin produced mapped 

predictions that are slightly higher on south-facing as opposed to north-facing slopes, and 

also surfaces providing shade irrespective of their aspect (Fig. 9-10). This pattern was more 

pronounced for the restricted-background sample model (Fig. 11-12), where suitable habitat 

is more restricted to the south-facing slopes than the default model. Incident solar radiation 

is comparatively lower at these same locations, whereas its intensity is higher at the 

locations predicted as unsuitable for this species. Both elevation and incident solar radiation 

were estimated as having the greatest contribution to the constrained model for L. 

bungalbin (22.6% and 36.9% respectively, Table 3). The partial dependence plots show the 

marginal response of L. bungalbin to elevation and solar radiation, as values of remaining 

variables are fixed at their average sample values (Fig. 13). The predicted suitability in terms 

of elevation is positively correlated up until a threshold of approximately 660 m. Thus, 

beyond this threshold, the marginal effect of increasing elevation is a decrease in predicted 

suitability for L. bungalbin. In terms of solar radiation, the response is high and uniform for 

radiation values in the range of approximately 200,000 WH/m2 to 400,000 WH/m2. The 

response shows a steep decrease at values > 1.1M WH/m2. Consequently, the marginal 

effect of increasing solar radiation beyond this point (once the effect of all the other 

variables has already been accounted for) is a decrease in predicted suitability for this 

species. 
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The likely geographic distributions of Baeckea sp. Bungalbin Hill are very different to 

the two species discussed above (Figure 14). This species is more likely to occur on the 

plains to the south, west and north-east of the HAR. This landscape is low elevation and 

gently undulating, and solar radiation intensity is lower at the locations of high predicted 

suitability. Several other plant species show high predicted habitat suitability on the plains 

(one example is Neurachne annularis see Supplementary Materials Fig. S41-44). 

As for T. aphylla subsp. aphylla and L. bungalbin, the default (unconstrained) model 

for L. ferricola predicts that favourable habitat is almost exclusively located on the HAR 

summits (Fig. 16-17). In contrast, the background-constrained model predicts likely 

occurrences in multiple locations across the plains (Fig. 18). Furthermore, relative to the 

unconstrained model predictions, habitat suitability on the HAR itself is substantially more 

restricted to the south-facing slopes (Fig. 19). This predicted range across the ironstone 

surfaces is more constrained than for L. bungalbin and again closely resembles areas where 

incident solar radiation is comparatively lower. 

Topographic determinants of rare plant species 

Rarer plant species (i.e. the seven threatened and priority one species, Table 1) are 

restricted to the narrower, higher elevation zone near to the HAR ridgeline (Fig. 20-21). 

There is a tendency for these taxa to prefer the south-facing slopes and shaded areas. In 

general, the surrounding plains are not predicted as suitable for this group of particularly 

sensitive species, though the series of hillocks in the south-east have moderate to low 

predicted suitability. In contrast, locations predicted as suitable for all priority three and 

priority four taxa occur over a much broader range of elevations extending from the 

ridgeline to lower positions on the hillslope (Fig. 22-23). Again, the most suitable habitats 
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are on south facing slopes or areas where incident radiation is lower. Notably, a much larger 

proportion of the surrounding plains are predicted to have medium suitability for this group 

of plants. 

Model cross-validation 

There was only minimal variation in cross-validated AUC scores between models for the 

target taxa. The average SD of the test AUC for the replicate runs was 0.009. The responses 

of most taxa to the predictive variables also showed minimal variation between models, 

though there were some exceptions. For instance, the response of B. sp. Bungalbin Hill 

showed a greater degree of variability to N and solar radiation.  

Discussion 

We built SDMs for eighteen priority and threatened flora growing on or near the HAR and 

assessed how topographic and geochemical predictors shape their distributions. Elevation, 

slope and topographic mediation of solar radiation were the principal variables that 

determined the degree of habitat suitability for most of the plant species assessed. We now 

consider the underlying mechanisms by which topography influences the distribution of 

threatened and conservation priority plants in the HAR and potentially on similar 

landscapes. 

Topographic mechanisms shaping rare plant distributions 

The habitat suitability maps highlighted that rare ironstone plants are most likely to occur 

on the surface of the HAR than on the surrounding, flatter landscape. In particular, the rarer 

plant species (e.g. T. aphylla subsp. aphylla, L. bungalbin) are more likely to occur nearer to 
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the BIF ridgeline, relative to downslope locations. Anderson and Ferree (2010) also observed 

that rare plant species in the north-eastern US were largely restricted to a single elevational 

zone. The higher elevation areas nearer the HAR ridge are better drained than the lower 

hillslopes. This result may suggest that the very arid conditions higher on the BIF slopes lead 

to intense competition between plants for the fissures, pits and depressions that trap 

moisture. Rainfall in semi-arid ecosystems such as the HAR is variable. Consequently, the 

shallow soils of BIFs will experience prolonged periods of drying with only occasional pulses 

of moistening (Austin et al., 2004). The threatened and priority one ironstone taxa must be 

well-adapted to survival on these well-drained, dry surfaces and they may have a 

competitive advantage over other plants species in such areas. 

Another general pattern is that favourable habitat is predicted to occur across a 

much larger spatial extent and a broader range of ecological gradients for the priority three 

and priority four species which are at lower levels of conservation risk than the 

comparatively rarer, threatened and priority one taxa. These species appear to be more 

tolerant of a broader spectrum of topographic and geochemical conditions than the rarer 

taxa predominantly restricted to high elevation zones. 

Slope had an important influence on determining habitat suitability for most plant 

species (irrespective of their conservation status). During model selection, we found a 

strong correlation between slope and different measures of elevation heterogeneity, such 

as the standard deviation of local elevation, which is a measure of the variability of local 

relief (Crisp et al., 2001). High variance of local relief represents high variation in aspect, 

slope and gaps over small distances. High surface complexity is a characteristic feature of 

the HAR and also of other BIFs in Australia and elsewhere in the world (Klein, 2005; Jacobi et 

al., 2007; Nistelberger et al., 2014). We excluded local elevation heterogeneity from the 
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models because of its strong correlation with slope. However, high variation in the latter is 

clearly representative of high habitat heterogeneity. Thus a high level of micro-topographic 

heterogeneity seems to be favourable for endemic plants on the HAR. This could be because 

the high surface complexity of the HAR broadens niche width; in short there are a greater 

variety of micro-habitats, all with varying environmental conditions. These confer a greater 

capacity for more species and individual plants to find a niche space (VivianSmith, 1997). 

High topographic heterogeneity is probably relevant to a variety of processes. For instance, 

it may be important to seed dispersal, because the high surface complexity affords cracks, 

fissures and gaps into which seeds can settle. Such features may also help gather available 

soil, nutrients and runoff. 

In many cases (e.g. L. bungalbin, L. ferricola and B. sp. Bungalbin Hill) there was a 

strong habitat preference for locations on the HAR and plains where the intensity of solar 

radiation was lower than at adjacent locations. Surfaces with south-facing aspects will 

experience lower temperatures than north-facing aspects and thus fewer drought events 

(Radcliffe & Lefever, 1981). This is a simple mechanism by which topography may mediate 

heat budgets, both across the undulating plains and on the surface of the HAR, and so 

facilitate higher plant biodiversity. The predicted habitat suitability map for B. sp. Bungalbin 

Hill is noteworthy because unlike many of the other taxa it occurs on the plains and not on 

the HAR. The terrain in this area does not resemble the high surface complexity of the BIF 

summits; however, neither is it flat and uniform. It exhibits a fine-scale variation in aspect, 

with much of this area receiving less solar radiation than elsewhere on the plains. 

Nonetheless, the high surface variability of the HAR will play an important role in protecting 

plants from heat. Optimum seed germination occurs in microhabitats in which evaporation 

is reduced, with irregular soil surface topographies providing the best conditions for 
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minimising evaporation (Hamrick & Lee, 1987). High micro-topographic heterogeneity on 

the HAR is one factor that may contribute to the formation of an irregular surface profile. 

More generally, our focus has been on how present-day topographic attributes 

constrain plant species ranges. However, historical geophysical factors may play an 

important role in that current species distributions might reflect processes that occurred on 

paleo-geological time-frames. For example, the OCBIL (Old Climatically Buffered Infertile 

Landscape) (Hopper, 2009) and Old Stable Landscape ideas (Mucina & Wardell-Johnson, 

2011) have been proposed to explain the high species diversity and endemism on ancient 

landscapes in the SWAFR, such as the HAR. 

Differences between background constrained and non-constrained models  

Generally, the constrained model output predicted that suitable habitat was more 

geographically restricted than the corresponding predictions of the non-constrained model. 

A clear exception applied to L. ferricola. The unconstrained model for this species predicted 

broad habitat suitability across the HAR, but not on the surrounding plains. The constrained 

model showed habitat suitability was more restricted on the HAR, but conversely much 

higher levels of suitability on the plains. There is high local variation in elevation and slope 

aspect in these areas on the plains, possibly explaining why these locations are favourable 

to L. ferricola. 

Methodological issues 

There are additional variables that will be important determinants shaping plant 

communities on BIFs, but that could not presently be included in the models generated. 

Biotic interactions and direct climatic variables estimated at small spatial-scales are notable 
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model externalities. The native resolution of the geochemical predictors was coarser than 

the topographic predictors, with the former requiring re-sampling as a result. Consequently, 

there will be significant smoothing/averaging of geochemical estimates at the scale of the 

local-scale topographic data.  

The negligible influence of curvature on all model outputs was unexpected. This 

might be a consequence of the small size of the fixed neighbourhood of the algorithm used 

to generate the curvature surface. This calculates the curvature on a cell by cell basis by 

fitting a fourth order polynomial to a local neighbourhood gird of 3 × 3 cells. This local 

context might be too restricted for the comparatively fine resolution of our DEM, and high 

local-scale topographic variability. For instance, we obtained poor estimates of relief 

(variation in local elevation) by using a window less than 8 × 8 cells. 

Applications to ecosystem rehabilitation  

We built SDMs of threatened and priority plant species because their rarity means that they 

are likely to be at the forefront of considerations in the environmental impact assessment 

(EIA) process. Given that all of these species are narrow-range ‘endemic’ plants, they might 

be more vulnerable to environmental changes and disturbances (Brown, 1995; Thuiller et 

al., 2005). For instance, in a drying, warming climate, even those specialised micro-habitats 

that currently confer suitable conditions for these plants may no longer be able to do so. 

Mapping variation in predicted habitat suitability for sensitive plant species (Fig. 3 – 

23; S3-S54) could be an effective contribution to the design of time and cost-effective 

biological surveys, for instance by directing survey effort at habitats most likely to be 

important for target species. The outputs from the maxent SDMs are also a preliminary 

insight into the environmental tolerances and niches of key plant species that occur on and 
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around the HAR. These findings improve our understanding of the topographic and 

geochemical conditions favourable for the establishment and persistence of the plant 

species studied here. Similar principles may apply to endemic plant species in rocky, semi-

arid settings elsewhere. 

A pre-requisite for ecosystem rehabilitation is that the limitations to plant growth in 

a given area are understood. A key outcome of a rehabilitation project is to assemble the 

environmental conditions necessary for re-vegetation and to minimise and mitigate the 

environmental effects of any disturbance. The SDM approach used here has identified the 

relative importance of topographic and geochemical conditions influencing the distributions 

of different plant species. Understanding the specific microhabitat requirements of 

individual ironstone taxa targeted for rehabilitation increases the probability of success of 

conservation efforts. This information is pertinent to achieving a self-sustaining plant 

assemblage by replicating the ecological and landscape characteristics favourable to target 

species, such as the geomorphic features which minimise evaporation in semi-arid 

environments. The availability of a high number of microsites with varying physical profiles 

seems to be important for recruitment success in natural populations of ironstone taxa, and 

the same principal ought to apply to populations being established for rehabilitation 

projects. Differences in nutrient, moisture, soil and heat variables at the scale of pits, 

depressions and slopes of varying aspect result in differential colonisation preferences. A 

rehabilitation approach should aim to mimic this selective recruitment by recreating large 

numbers of differentiated microhabitats and thus maximising the number of specialised 

sites that can harbour endemic taxa with specialised habitat requirements. 

Rehabilitation techniques have been applied in other environments to generate 

substantial degrees of surface complexity. An example is the Forestry Reclamation Approach 
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(FRA), used to restore coal-mined land to forest in Appalachia by recreating high fine-scale 

micro-topographic variation. This is achieved by dumping overburden into numerous 

mounds using the ‘end-dump’ method of minimising surface compaction (Zipper et al., 

2011). It remains to be seen how well a similar method would work in an environment 

similar to the HAR. Given the high surface temperatures and low variable rainfall patterns at 

the HAR (and other BIFs in semi-arid zones) it seems this method would need modification 

to ensure that the re-constructed surfaces can provide adequate shelter from intense solar 

radiation. 

The threshold relationship between species occurrences and solar radiation also 

shows that most species ‘prefer’ a habitat where micro-topography limits incident radiation 

and so probably reduces the rate of evaporation and evapotranspiration. This must confer 

an advantage to many species in semi-arid environments such as the HAR. Desiccation and 

water stress can compromise reintroduction of plants or rehabilitation of disturbed habitats 

(Ackerly et al., 2010), which is a particular risk for seed germination on the HAR where high 

seedling mortality rates have been observed (Yates et al., 2011). Similarly, 90% of newly 

emerged tree species seedlings on cliff-faces perished (Matthes & Larson, 2006). 

Consequently, basing a rehabilitation project around the use of seedlings may have limited 

success. A more fruitful strategy might be to relocate juvenile plants to an artificial 

landscape of high local-scale heterogeneity and in particular, locating plants on south-facing 

or sheltered aspects of this landscape to help attenuate heat budgets.  
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Figure 1. Banded ironstone formations (BIFs) in the study area (A). BIFs 
are topographically complex and comprise a mosaic of fractured rock 
surfaces with intricate variation in relief, slope and aspect (B). Many 
plant species grow on rocky surfaces with negligible soil cover, often in 
small gaps between rocks. 



Figure 2. The study area comprises the Helena and Aurora Range banded ironstone formation (BIF) summits and surrounding BIFs and plains. 
The study area was scanned by three separate surveys: light detection and ranging (LiDAR, delineated in red, 1524 km2), radar (delineated in 
blue, 69 km2), aerial photography (delineated in green, 12 km2). Inset: the location of the study area in the Coolgardie biogeographic region in 
south-western Australia. 



Figure 3. Predicted habitat suitability for Tetratheca aphylla subsp. Aphylla (default background sample selection). 



Figure 4. Predicted habitat suitability for Tetratheca aphylla subsp. Aphylla (default background sample selection). 



Figure 5. Partial dependence plots showing how the marginal response changes of Tetratheca 
aphylla subsp. aphylla as each predictor is varied whilst the values of the remaining variables 
are fixed at their average sample values. 



Figure 6. Predicted habitat suitability for Tetratheca aphylla subsp. Aphylla (restricted background sample selection). 



Figure 7. Predicted habitat suitability for Tetratheca aphylla subsp. Aphylla (restricted background sample selection). 



Figure 8. Partial dependence plots showing how the marginal response changes of Tetratheca 
aphylla subsp. aphylla as each predictor is varied whilst the values of the remaining variables 
are fixed at their average sample values. 



Figure 9. Predicted habitat suitability for Lepidosperma bungalbin (default background sample selection). 



Figure 10. Predicted habitat suitability for Lepidosperma bungalbin (default background sample selection). 



Figure 11. Predicted habitat suitability for Lepidosperma bungalbin (restricted background sample selection). 



Figure 12. Predicted habitat suitability for Lepidosperma bungalbin (restricted background sample selection). 



Figure 13. Partial dependence plots showing how the marginal response changes of 
Lepidosperma bungalbin as each predictor is varied whilst the values of the remaining variables 
are fixed at their average sample values. 



Figure 14. Predicted habitat suitability for Baeckea sp. Bungalbin Hill for each 2 × 2 m grid cell (default background sample 
selection). 



Figure 15. Partial dependence plots showing how the marginal response of Baeckea sp. 
Bungalbin Hill changes as each predictor is varied whilst the values of the remaining variables 
are fixed at their average sample values. 



Figure 16. Predicted habitat suitability for Lepidosperma ferricola (default background sample selection). 



Figure 17. Predicted habitat suitability for Lepidosperma ferricola (default background sample selection). 



Figure 18. Predicted habitat suitability for Lepidosperma ferricola (default background sample selection). 



Figure 19. Predicted habitat suitability for Lepidosperma ferricola (restricted background sample selection). 



Figure 20. Predicted habitat suitability for all threatened and priority one taxa (restricted background sample selection). 



Figure 21. Predicted habitat suitability for all threatened and priority one taxa, focusing on the HAR (restricted background 
sample selection). 



Figure 22. Predicted habitat suitability for all priority three and priority four taxa (restricted background sample selection). 



Figure 23. Predicted habitat suitability for all priority three and priority four taxa, focusing on the HAR (restricted 
background sample selection). 



Supplementary Materials 
 
 

Figures S1 – S54 



Figure S1. The study area comprises the Helena and Aurora Range banded ironstone formation (BIF) summits and surrounding BIFs and plains. 
Survey transects are shown in grey. The diagonal (north-west to south-east) transects in the south were flown by helicopter. Inset: study area 
location in the Coolgardie biogeographic region in south-western Australia. 



Figure S2. The study area comprises the Helena and Aurora Range banded ironstone formation (BIF) summits and surrounding BIFs and plains. 
Priority and threatened plant occurrences (n = 25,076) are shown as blue circles. Inset: the location of the study area in the Coolgardie 
biogeographic region in south-western Australia. 



Figure S3. Predicted habitat suitability for Acacia adinophylla (default background sample selection). 



Figure S4. Predicted habitat suitability for Acacia adinophylla (default background sample selection). 



Figure S5. Partial dependence plots showing how the marginal response of A. adinophylla 
changes as each predictor is varied whilst the values of the remaining variables are fixed at 
their average sample values. 



Figure S6. Predicted habitat suitability for Acacia sp. Bungalbin Hill for each 2 × 2 m grid cell (default background sample 
selection) 



Figure S7. Predicted habitat suitability for Acacia sp. Bungalbin Hill for each 2 × 2 m grid cell (default background sample 
selection) 



Figure S8. Partial dependence plots showing how the marginal response of Acacia sp. 
Bungalbin Hill changes as each predictor is varied whilst the values of the remaining variables 
are fixed at their average sample values. 



Figure S9. Predicted habitat suitability for Banksia arborea for each 2 × 2 m grid cell (default background sample selection). 



Figure S10. Predicted habitat suitability for Banksia arborea for each 2 × 2 m grid cell (default background sample selection). 



Figure S11. Predicted habitat suitability for Banksia arborea for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S12. Predicted habitat suitability for Banksia arborea for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S13. Predicted habitat suitability for Beyeria rostellata for each 2 × 2 m grid cell (default background sample 
selection). 



Figure S14. Predicted habitat suitability for Beyeria rostellata for each 2 × 2 m grid cell (default background sample 
selection). 



Figure S15. Predicted habitat suitability for Beyeria rostellata for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S16. Predicted habitat suitability for Beyeria rostellata for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S17. Predicted habitat suitability for Eucalyptus formanii for each 2 × 2 m grid cell 



Figure S18. Predicted habitat suitability for Eucalyptus formanii for each 2 × 2 m grid cell 



Figure S19. Predicted habitat suitability for Eucalyptus formanii for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S20. Predicted habitat suitability for Eucalyptus formanii for each 2 × 2 m grid cell (restricted background sample 
selection). 



Figure S21. Predicted habitat suitability for Grevillea erectiloba. 



Figure S22. Predicted habitat suitability for Grevillea erectiloba. 



Figure S23. Predicted habitat suitability for Grevillea erectiloba (restricted background sample selection). 



Figure S24. Predicted habitat suitability for Grevillea erectiloba (restricted background sample selection). 



Figure S25. Predicted habitat suitability for Grevillea georgeana. 



Figure S26. Predicted habitat suitability for Grevillea georgeana. 



Figure S27. Predicted habitat suitability for Grevillea georgeana (restricted background sample selection). 



Figure S28. Predicted habitat suitability for Grevillea georgeana (restricted background sample selection). 



Figure S29. Predicted habitat suitability for Hibbertia lepidocalyx subsp. Tuberculata (default background sample selection). 



Figure S30. Predicted habitat suitability for Hibbertia lepidocalyx subsp. Tuberculata (default background sample selection). 



Figure S31. Predicted habitat suitability for Hibbertia lepidocalyx subsp. Tuberculata (restricted background sample 
selection). 



Figure S32. Predicted habitat suitability for Hibbertia lepidocalyx subsp. Tuberculata (restricted background sample 
selection). 



Figure S33. Predicted habitat suitability for Leucopogon spectabilis (default background sample selection). 



Figure S34. Predicted habitat suitability for Leucopogon spectabilis (default background sample selection). 



Figure S35. Predicted habitat suitability for Leucopogon spectabilis (restricted background sample selection). 



Figure S36. Predicted habitat suitability for Leucopogon spectabilis (restricted background sample selection). 



Figure S37. Predicted habitat suitability for Mirbelia ferricola (default background sample selection). 



Figure S38. Predicted habitat suitability for Mirbelia ferricola (default background sample selection). 



Figure S39. Predicted habitat suitability for Mirbelia ferricola (restricted background sample selection). 



Figure S40. Predicted habitat suitability for Mirbelia ferricola (restricted background sample selection). 



Figure S41. Predicted habitat suitability for Neurachne annularis (default background sample selection). 



Figure S42. Predicted habitat suitability for Neurachne annularis (default background sample selection). 



Figure S43. Predicted habitat suitability for Neurachne annularis (restricted background sample selection). 



Figure S44. Predicted habitat suitability for Neurachne annularis (restricted background sample selection). 



Figure S45. Predicted habitat suitability for Spartothamnella sp. Helena & Aurora Range (default background sample 
selection). 



Figure S46. Predicted habitat suitability for Spartothamnella sp. Helena & Aurora Range (default background sample 
selection). 



Figure S47. Predicted habitat suitability for Stenanthemum newbeyi (default background sample selection). 



Figure S48. Predicted habitat suitability for Stenanthemum newbeyi (default background sample selection). 



Figure S49. Predicted habitat suitability for Stenanthemum newbeyi (restricted background sample selection). 



Figure S50. Predicted habitat suitability for Stenanthemum newbeyi (restricted background sample selection). 



Figure S51. Predicted habitat suitability for Tetratheca harperi (default background sample selection). 



Figure S52. Predicted habitat suitability for Tetratheca harperi (default background sample selection). 



Figure S53. Predicted habitat suitability for Tetratheca harperi (restricted background sample selection). 



Figure S54. Predicted habitat suitability for Tetratheca harperi (restricted background sample selection). 


