SINCLAIR KNIGHT MERZ PTY LTD

YAKABINDIE NICKEL PROJECT

REVIEW OF HISTORIC GEOCHEMICAL TESTWORK ON MINE-WASTE SAMPLES

Implications for Mine-Waste and Low-Grade-Ore Management

GRAEME CAMPBELL AND ASSOCIATES PTY LTD (ACN 061 827674) OCTOBER 2005 Job No. 0516

TABLE OF CONTENTS

1.0

2.0

INTRODUCTION	1
STUDY APPROACH	2
2.1 Accumptions Made in Parious of Historia Testwork	C

	2.1	Assumptions Made in Review of Historic Testwork	.2
		2.1.1 AGC Woodward-Clyde (1991) Study	.2
		2.1.2 ANSTO (1996) Study	.3
	2.2	Classification Criteria	.3
3.0	GEC	CHEMISTRY OF REGOLITH AND WASTE-BEDROCK SAMPLES	
	FRC	M SIX-MILE DEPOSIT	.6
	3.1	Salinity and Acid-Formation Potential	.6
		3.1.1 Regoliths	.6
		3.1.2 Waste-Bedrocks	.6
	3.2	Minor-Element Content	.8
4.0	GEO	CHEMISTRY OF REGOLITH AND WASTE-BEDROCK SAMPLES	
	FRC	OM GOLIATH DEPOSIT	.9
	4.1	Salinity and Acid-Formation Potential	.9
		4.1.1 Regoliths	.9
		4.1.2 Waste-Bedrocks	.9
	4.2	Minor-Element Content	.10
5.0	CON	ICLUSIONS AND MANAGEMENT IMPLICATIONS	.11
	5.1	Regoliths	.11
	5.2	Waste-Bedrocks	.12
	5.3	Low-Grade-Ores	.13
6.0	REC	COMMENDED ADDITIONAL TESTWORK	.15
7.0	REF	ERENCES	.16

Page Nos.

TABLES

(At Back of Report Text)

Table 3.1:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Regolith Samples (Six-Mile Deposit)
Table 3.2:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Hangingwall: Six-Mile Deposit)
Table 3.3:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Footwall: Six-Mile Deposit)
Table 3.4:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Internal: Six-Mile Deposit)
Table 3.5:	Assay Results for Regolith and Waste-Bedrock Samples (Six-Mile
	Deposit)
Table 4.1:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Regolith Samples (Goliath Deposit)
Table 4.2:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Hangingwall: Goliath Deposit)
Table 4.3:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Footwall: Goliath Deposit)
Table 4.4:	Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for
	Waste-Bedrock Samples (Internal: Goliath Deposit)

ACRONYM	PARAMETER	DEFINITION/DETERMINATION	UNIT
AFP ARD	Acid-Formation Potential		
Total-S	Total Sulphur	Analysis Result	% (w/w)
Sulphide-S	Sulphide Sulphur Acid-Neutralisation Canacity	Testwork Result [i.e. Sulphide-S = Total-S - Sulphate-S]	% (w/w) % (w/w) kg H ₂ SO /tonne
MPA	Maximum-Potential Acidity	Calculation	kg H ₂ SO ₄ /tonne
NAPP	Net-Acid-Producing Potential	Calculation	kg H ₂ SO ₄ /tonne
NAG	Net-Acid Generation	Testwork Result	kg H ₂ SO ₄ /tonne
NAF	Non-Acid Forming	 Calculation: Sulphide-S < 0.3 % Sulphide-S ≥ 0.3 %, and negative-NAPP value with ANC/MPA ≥ 2.0 	kg H ₂ SO ₄ /tonne
PAF	Potentially-Acid Forming	Calculation: • Sulphide-S ≥ 0.3 %, and any positive-NAPP value • Sulphide-S ≥ 0.3 %, and a negative-NAPP value with ANC/MPA < 2.0	kg H ₂ SO ₄ /tonne
PAF-[SL]	PAF-[Short-Lag]	Estimation [e.g. inferred from 'kinetic' testing]	
PAF-[LL]	PAF-[Long-Lag]	Estimation [e.g. inferred from 'kinetic' testing]	
SOR	Sulphide-Oxidation Rate	Testwork Result [e.g. obtained from 'kinetic' testing]	mg SO ₄ /kg/week,

SUMMARY OF TECHNICAL TERMS EMPLOYED IN THIS REPORT

Notes:

The <u>PAF-[SL]</u> classification applies to (initially circum-neutral) PAF-materials that may acidify (viz. pH less than 5) within a matter of weeks-to-months when subjected to <u>"aggressive-ambient-weathering"</u>, corresponding to periods of at least a few days during which unsaturated-conditions prevail (via drainage/evaporation processes) between successive inundations that, in turn, occur semi-regularly (e.g. weekly-to-fortnightly "on-average" during most of the annual hydrological-cycle).

The **PAF-[LL]** classification applies to PAF-materials where exposure to the atmosphere for years (even decades, or longer) may be needed before acidification develops. Circum-neutral-pH during the "lag-phase" for such lithotypes is chiefly due to buffering reactions involving carbonate-minerals.

<u>Climate directly influences the duration of the "lag-phase", and a sulphide-gangue assemblage classified as PAF-[SL] in a "humid" environment where the SOR is controlled by **O**₂-supply, may instead be classified as PAF-[LL] in semi-arid/arid environments where the SOR is contolled by water-supply (viz. frequency of "flushing-episodes") [Campbell 2004]. The formation of "secondary-oxidation-products" (e.g. Fe-oxyhydroxides) as protective-coatings is generally enhanced during the "lag-phase-stage" of mine-waste weathering in semi-arid/arid environments, and so further curtails sulphide-oxidation rates.</u>

1.0 INTRODUCTION

BHP Billiton Pty Ltd (Nickel West) is developing the Yakabindie Nickel Project located *c*. 30 kms to the south of Mt Keith, Western Australia.

Ore will be produced via open-pit mining of the Six-Mile Deposit and Goliath Deposit, and the excavated waste-rock materials (viz. regoliths and waste-bedrocks) placed on waste-dumps in the vicinity of the Pits. Low-grade-ores will also be stockpiled for possible subsequent treatment in the mill, subject to metallurgical evaluation, and Project economics.

Graeme Campbell & Associates Pty Ltd (GCA) was commissioned by Sinclair Knight Merz Pty Ltd to review reports by AGC Woodward-Clyde (1991) and ANSTO (1996) on geochemical testwork performed on mine-waste samples derived from the above Deposits.

The testwork results are presented and discussed in this report, and implications for minewaste management highlighted.

2.0 STUDY APPROACH

2.1 Assumptions Made in Review of Historic Testwork

Since the AGC Woodward-Clyde (1991) and ANSTO (1996) studies, there have been numerous advances and improvements in the testwork procedures employed for the geochemical characterisation of mine-waste materials (e.g. AMIRA 2002). Nonetheless, the testing methods employed in these earlier studies allow valid assessment of the mine-waste materials to be produced during the Yakabindie Nickel Project.

2.1.1 AGC Woodward-Clyde (1991) Study

The samples tested in the AGC Woodward-Clyde (1991) study are derived from the Six-Mile Deposit, and correspond to down-hole intervals of c. 1 m.

It is assumed herein that the samples tested are representative of the major lithotypes to be produced during the open-pit mining of the Six-Mile Deposit.

Where Total-S values are listed as "0.0 %" in the AGC Woodward-Clyde (1991) report, they are presented as < 0.01 % herein.

Where appropriate, the parameter values listed in the AGC Woodward-Clyde (1991) report have been rounded to no more than two significant-figures herein.

In the AGC Woodward-Clyde (1991) study, the mine-waste samples were tested for acidformation potential, and salinity. Selected samples were also assayed for a suite of minorelements.

2.1.2 ANSTO (1996) Study

The samples tested in the ANSTO (1996) study are mostly derived from the Goliath Deposit with some samples from the Six-Mile Deposit. Drillhole details are not available for all samples, but where these are available, the down-hole intervals were c. 1 m.

It is assumed herein that the samples tested are representative of the major lithotypes to be produced during the open-pit mining of the Goliath Deposit.

Where CO_3 values are listed as "0 %" in the ANSTO (1996) report, they are presented as < 0.05 % herein.

Where Net-Acid-Generation (NAG) values are listed as "0 kg H_2SO_4 /tonne" in the ANSTO (1996) report, they are presented as < 0.5 kg H_2SO_4 /tonne herein.

Where appropriate, the parameter values listed in the ANSTO (1996) report have been rounded to no more than two significant-figures herein.

In the ANSTO (1996) study, the mine-waste samples were tested for acid-formation potential, and salinity.

2.2 Classification Criteria

The <u>Maximum-Potential-Acidity (MPA)</u> values (in kg H_2SO_4 /tonne) of the mine-waste samples were calculated by multiplying the Sulphide-S values (in %) by 30.6. The multiplication-factor of 30.6 reflects both the reaction stoichiometry for the completeoxidation of pyrite/pyrrhotite, by O_2 to "Fe(OH)₃" and H_2SO_4 , and the different weightbased units of % and kg H_2SO_4 /tonne.

Graeme Campbell & Associates Pty Ltd

The <u>Net-Acid-Producing-Potential (NAPP</u>) values (in kg H_2SO_4 /tonne) were calculated from the corresponding MPA and <u>Acid-Neutralisation-Capacity (ANC</u>) values (i.e. NAPP = MPA - ANC).¹

In terms of AFP, mine-waste materials may be classified into one of the following categories, viz.

- Non-Acid Forming (NAF).
- <u>Potentially-Acid Forming (PAF)</u>.

There are **no** unifying, "standard" criteria for classifying the AFP of mine-waste materials (Campbell 2002a,b; Smith 1992), and reflects the diversity of sulphide and gangue-mineral assemblages within (un)mineralised-lithotypes of varying weathering-and alteration-status. Rather, criteria for classifying AFP may need to be tailored to deposit-specific geochemistry, and mineralogy.

The AFP-classification criteria often employed at mining-operations worldwide are:

- <u>NAF</u>: Sulphide-S < 0.3 %. For Sulphide-S \ge 0.3 %, <u>both</u> a negative NAPP value, <u>and</u> an ANC/MPA ratio \ge 2.0.
- **<u>PAF</u>**: For Sulphide-S \ge 0.3 %, any positive-NAPP value; negative-NAPP value with an ANC/MPA ratio < 2.0.

In recent years, fundamental-research (especially estimation of reaction-rates for diverse sulphide/gangue-mineral assemblages), and field-experience at mining operations world-wide, have shown that the potential for Acid-Rock Drainage (ARD) production is

¹ NAPP values were <u>not</u> performed for sample with Sulphide-S contents less than 0.1 %.

very low for mine-waste materials with ANC/MPA ratios greater than 2.0 (e.g. AMIRA 2002). This ANC/MPA ratio is employed in the present work.²

² It should be noted that mining-regulators in Nevada (USA) classify a mine-waste sample as NAF, if it is characterised by an ANC/MPA ratio greater than 1.2 (US EPA 1994). This lower ANC/MPA ratio reflects the semi-arid conditions typically encountered at mine-sites in Nevada. Although utilised in the early-1990s, it is understood that an ANC/MPA ratio of 1.2 is still entertained by regulators in Nevada for "screening" PAF and NAF varieties of mine-wastes in semi-arid settings.

3.0 GEOCHEMISTRY OF REGOLITH AND WASTE-BEDROCK SAMPLES FROM SIX-MILE DEPOSIT

3.1 Salinity and Acid-Formation Potential

3.1.1 Regoliths

The fourteen (14) samples of regoliths were characterised by (Table 3.1):

- pH and EC values of 7.2-9.2, and 0.35-7.1 mS/cm, respectively;³ and,
- Total-S values less than 0.1-0.2 %.⁴

The testwork results indicate that the samples are all classified as <u>NAF</u>.

The samples were neutral-to-alkaline with moderate-to-high contents of soluble-salts Although not tested, the soluble-salts are expected to be dominated by chlorides.

3.1.2 Waste-Bedrocks

The seventy (70) samples of waste-bedrocks were characterised by (Tables 3.2-3.4):

- pH and EC values of 5.9-10.1, and 0.17-2.7 mS/cm, respectively;
- Total-S values that ranged from less than 0.1-0.2 %, to 16.4 %; and,
- ANC values ranging up to $370 \text{ kg H}_2\text{SO}_4/\text{tonne.}$

³ EC = Electrical-Conductivity. The pH and EC Tests are described in the table footnote.

⁴ One sample had a Total-S value of 3.7 %, but refer table footnote for qualifying remarks for this result.

Fifty-six (56) samples had Total-S values less than 0.5 %, and most of these had Total-S values less than 0.1 %. This distribution of Total-S indicates a paucity, at the "metre-scale", of sulphide-minerals in the majority of lithotypes, and accords with the style of mineralisation within the Six-Mile Deposit. Although ANC testing was not conducted on all samples, a groundmass with a moderate-to-high capacity to consume acid is the norm, and reflects at least "trace-carbonates", and/or ultramafic-silicates (e.g. antigorite and lizardite).⁵

The majority of samples are classified as <u>NAF</u>. Due to the nature of the groundmass, the PAF samples are generally classified as <u>PAF-[Long-Lag]</u>. Furthermore, where PAF-rock occur, the indications are that they would be co-dumped with NAF-rock.

As a group, and as expected, the samples of the *volcanic-sediment-(Footwall-Massive-Sulphides)* stood out with Total-S values of 2.1-16.4 %. Despite containing abundant sulphide-minerals, the high ANC values indicate a groundmass with appreciable pH-buffering capacity, so that this lithotype is classified as <u>PAF-[Long-Lag]</u>.⁶

The samples were neutral-to-alkaline with low-to-moderate contents of soluble-salts Although not tested, the soluble-salts are expected to be dominated by chlorides.

3.2 Minor-Element Content

The assay results for selected minor-elements in thirty-four (34) samples of regoliths and waste-bedrocks are presented in Table 3.5.

⁵ Effervescence (i.e. "fizzing") was often observed when dilute HCl was added ('in-the-cold') to the samples in the ANC testwork (AGC Woodward-Clyde 1991).

⁶ A programme of 'Kinetic-Testwork' (viz. Weathering-Columns) would be needed to fully assess the acid-forming character of this lithotype in terms of sulphide-mineral reactivity, and groundmass-buffering behaviour.

When compared with the respective minor-element contents typically recorded for <u>unmineralised</u> soils, regoliths and bedrocks (Bowen 1979), Ni and Cr stood out in a number of samples in terms of relative enrichments. The Ni and Cr contents ranged up to 0.6-0.7 %, and 0.1-0.2 %, respectively.

It is important to note that ultramafics are typically characterised by Ni and Cr contents of c. 0.20 %, and c. 0.23 %, respectively (Reimann and de Caritat, 1998). The Ni and Cr in these rock types occur as "fixed" forms within crystal-lattices of High-MgO-silicates (e.g. Ni in olivines and serpentines), and resistate-oxides (e.g. Cr in chromite). When this "bio-unavailable-Ni-baseline" is taken into account, the waste-bedrocks should typically contain less than 0.1-0.2 % of Ni forms which may potentially become available for leaching, and/or uptake by biota, through weathering.⁷ Such Ni forms should be mainly associated with sulphide-minerals, and the lithotypes concerned should occur largely proximal to the Ore-Zone(s).

⁷ Nickel is one transition-metal which may be moderately soluble at circum-neutral-pH (Uren 1992).

4.0 GEOCHEMISTRY OF REGOLITH AND WASTE-BEDROCK SAMPLES FROM GOLIATH DEPOSIT

4.1 Salinity and Acid-Formation Potential

4.1.1 Regoliths

The twenty (20) samples of regoliths were characterised by (Table 4.1):

- pH and EC values of 6.7-10.0, and 0.096-6.5 mS/cm, respectively;⁸
- Sulphide-S values that ranges from less than 0.01 %, to 0.48 %; and,
- ANC values of $3.3-490 \text{ kg H}_2\text{SO}_4/\text{tonne}$.

If the results for the Silica-Carbonate-Oxide-[Mineralised] samples are excluded, then all samples had Sulphide-S values less than 0.1-0.2 %.

The testwork results indicate that the samples are all classified as <u>NAF</u>. The samples were neutral-to-alkaline with moderate-to-high contents of soluble-salts

4.1.2 Waste-Bedrocks

The fifty-eight (58) samples of waste-bedrocks were characterised by (Tables 4.2-4.4):

- pH and EC values of 7.9-10.3, and 0.095-1.9 mS/cm, respectively;
- Sulphide-S values that ranged from less than 0.01 %, to 4.0 %; and,

⁸ The pH and EC Tests are described in the table footnote.

• ANC values of $7.1-370 \text{ kg H}_2\text{SO}_4/\text{tonne}$.

Forty-nine (49) samples had Total-S values less than 0.5 %, and most of these had Total-S values less than 0.1 %. As for the Six-Mile Deposit, there is a paucity of sulphide-minerals, and accords with the style of mineralisation within the Goliath Deposit. The ANC-testing shows that the mine-wastes from the latter Deposit have a moderate-to-high capacity to consume acid, and reflects at least "trace-carbonates", and/or ultramafic-silicates.

The majority of samples are classified as <u>NAF</u>. Due to the nature of the groundmass, the PAF samples are generally classified as <u>PAF-[Long-Lag]</u>. Furthermore, where PAF-rock occur, the indications are that they would be co-dumped with NAF-rock.

As a group, the samples of the *volcanic-sediment-(Footwall-Massive-Sulphides)* stood out with Sulphide-S values of 0.71-4.0 %. Due to the high ANC values, this lithotype is classified as <u>PAF-[Long-Lag]</u>.

The samples were neutral-to-alkaline with low-to-moderate contents of soluble-salts

4.2 Minor-Element Content

No assays for minor-elements were undertaken in the ANSTO (1996) study. However, given the common style of mineralisation of the Deposits, the pattern and degree of minor-element enrichments (chiefly in Ni and Cr) in mine-wastes derived from the Goliath Deposit should be similar to those for the Six-Mile Deposit (Section 3.2).

5.0 CONCLUSIONS AND MANAGEMENT IMPLICATIONS

Based on the review of the AGC Woodward-Clyde (1991) and ANSTO (1996) reports, conclusions and implications for mine-waste management during the Yakabindie Nickel Project are outlined in the following sections. Although generated *c*. 10-15 years ago, the data-base derived from the above reports provides a good picture of mine-waste geochemistry for the Project.

Since the geochemistry of the mine-waste samples tested from both the Six-Mile Deposit and Goliath Deposit is so similar, the key findings of the above studies are discussed as one.

5.1 Regoliths

Geochemically, the regoliths to be produced during open-pit mining should be benign, and hospitable as a rooting-medium for the native-vegetation endemic to the mine-site (e.g. mulgas, chenopods, forbs and arid-grasses/groundcovers). However, revegetation aspects for the final closure of waste-landforms need to be assessed by others.

Physically, it is inevitable that, due to their susceptibility to erosion (especially by episodic, intense storms) certain regoliths will pose constraints on waste-dump design, due to dispersive-clays, and/or enrichment in silts/fine-sands (ACMER 2004). However, the siliceous, duricrust-type stratum beneath the *in-situ* soil (e.g. *red earth*) should be a key resource for waste-dump sheeting to prevent (sub-)surface erosion (e.g. Campbell 2004).

In Section 6.0, it is recommended that the major types of regoliths are physically characterised to assist waste-dump design, especially to identify which regolith type(s) should be (a) segregated for later use in rehabilitation works site-wide, and (b) <u>not</u> placed in the surface-zone of the final waste-landforms.

Graeme Campbell & Associates Pty Ltd

5.2 Waste-Bedrocks

At the "metre-scale", the lithotypes/waste-bedrocks in the Waste-Zone of the Pits are characterised by meagre abundances of sulphide-minerals dispersed throughout a groundmass with a moderate-to-high capacity to consume acid, due to at least "trace-carbonates", and High-MgO-silicates. Accordingly, the waste-bedrocks are classified as Non-Acid Forming (NAF).

Competent, durable varieties of the NAF-waste-bedrocks should be suitable for sitewide applications where they will be exposed over the longer-term (e.g. safety-bund around Pit-perimeter at site-closure, diversion-bunds for surface-hydrology control, rock-lined structures for drainage control on waste-dumps and tailings-storage facility, etc.). The durability of specific lithotypes would need to be assessed by others. However, geochemically, for applications where exposure will occur over the longerterm, consideration should be given to sourcing waste-bedrocks distal to the ore-zones, so that the release of soluble-metal (e.g. Ni) forms during circum-neutral weathering of "trace-sulphides" is negligible.

Two important exceptions to the above are:

(a) The volcanic-sediment-[Footwall-Massive-Sulphide]. This lithotype occurs in the Wall-Waste-Zone of each Deposit, and is classified as <u>Potentially-Acid Forming (PAF</u>), and due to its groundmass, may be further classified as <u>PAF-[Long-Lag]</u>.⁹ The volcanic-sediment-[Footwall-Massive-Sulphide] needs to be deeply buried to isolate sulphide-surfaces from meteoric-waters.¹⁰ This lithotype is expected to

⁹ A programme of 'kinetic' testing (viz. Weathering-Column) would be needed to estimate the duration of the "lag-phase" (i.e. the period during which sulphide-oxidation occurs, but acidification does not develop, due to pH-buffering by groundmass-phases).

¹⁰ Under the semi-arid conditions of the mine-sites, water-supply, and <u>not</u> O_2 -supply, will control the rate of sulphide-oxidation (Campbell 2004).

be visually readily identified in the Pit(s) ahead of mining, and volumetrically, it constitutes a very-small proportion of the total-waste volume to be produced (Mr Ian Hart, *pers. commun.*); and,

(b) The Internal-Waste-Zone (i.e. waste-bedrocks within ore-zones which are not segregated for stockpiling as low-grade ores). Although the weathering of such lithotypes should be characterised by circum-neutral (viz. pH 6-8) conditions, and the rates of weathering should be modest, soluble-Ni forms should result.¹¹ Accordingly, waste-bedrocks derived from the Internal-Waste-Zone should be deeply buried in the wastedumps.

Additional sampling and testing should be undertaken, as appropriate, during the Project to confirm (or refine) the above "geochemical-typing", and ensuing implications for waste-bedrock management.

5.3 Low-Grade-Ores

It is understood that metallurgical evaluation has shown that talcose varieties of the various ores are currently difficult to treat, and that the Talcose-Oxide-Ores and Talcose-Supergene-Ores from both Deposits are to be placed within the waste-dumps (Mr Ian Hart, *pers. commun.*). These talcose-ores should be handled like the waste-bedrocks from Internal-Waste-Zone, as described above.

<u>Talcose-Transition-Ores</u> and <u>Talcose-Primary-Ores</u> are planned to be stockpiled (Mr Ian Hart, *pers. commun.*), and subsequently treated in the mill, subject to metallurgical evaluation, and Project economics. Such talcose-ores should be classified as <u>NAF</u>, so that during weathering on the stockpiles, circum-neutral (viz. pH 6-8) conditions should prevail, and sulphide-oxidation rates should be modest. Faster rates of sulphide-

oxidation may locally occur in the Talcose-Transition-Ores where violarite dominates the sulphide-mineral suite. Soluble-Ni forms should be produced during circum-neutral weathering, although under the semi-arid conditions of the mine-sites, this should be confined largely to the top 2-3 m of the stockpiles, as governed by seasonal moisture dynamics.¹² Further testing, including 'kinetic' testing, is required to better assess the nature of weathering processes on the stockpiles of the Talcose-Transition-Ores and Talcose-Primary-Ores derived from the Six-Mile Deposit and Goliath Deposit (Section 6.0).

Conservatively, provision should be made, at this stage, for the capture and retention of the drainage-waters produced by the stockpiles of the Talcose-Transition-Ores and Talcose-Primary-Ores. Opportunistic monitoring of the collected drainage-water should be carried out to assess water-quality, and other, issues pertinent to stockpile management in the longer-term.

Graeme Campbell & Associates Pty Ltd

¹¹ Modest rates of sulphide-oxidation are contingent on violarite being absent.

¹² Direct, field-based evidence for this kind of weathering-profiles is clear from historic work undertaken by Dr. Graeme Campbell on low-grade-ore stockpiles at the Leinster Nickel Operations near Leinster, Western Australia.

6.0 RECOMMENDED ADDITIONAL TESTWORK

To assist pre-project planning, additional testwork is recommended, as outlined below.

• <u>Characterisation of Topsoils and Regoliths for Erosion Prevention</u>

To identify the ease/difficulty with which the major topsoil/regolith types may erode on the side-slopes of waste-dumps, testing should be undertaken to determine mineralogy, clay-surface chemistry, soluble-salt composition, and dispersion tendency (e.g. Emerson-Dispersion Test). Testing of this kind may be readily undertaken on RC-cuttings, etc.

 Weathering/Solubility Behaviour of Talcose-Transition-Ore and Talcose-<u>Primary-Ore</u>

A programme of 'kinetic' testing should be undertaken to allow assessment of sulphide-oxidation, pH-buffering properties, and metalsolubility behaviour (especially of Ni) for the above talcose-ores which are destined for stockpiling. Such testing may be readily undertaken on RC-cuttings, and should allow assessment of the "flushing-frequencydependence" of sulphide-oxidation in semi-arid settings (Campbell 2004), since this dependence reduces both sulphide-oxidation, and metalrelease rates.

- ACMER, 2004, "Identification and Management of Dispersive Mine Spoils", Final Report, June 2004, Australian Centre for Mining Environmental Research.
- AGC Woodward-Clyde, 1991, "Yakabindie Nickel Project: Waste Characterisation Study", Unpublished report prepared for Dominion Mining Ltd.
- AMIRA International Ltd, 2002, "ARD Test Handbook", Prepared by Ian Wark Research Institute, and Environmental Geochemistry International Pty Ltd.
- ANSTO, 1996, "Yakabindie Nickel Project: Geochemical Characterisation of Waste Materials", Unpublished report prepared for ERA Environmental Services Pty Ltd.
- Bowen HJM, 1979, "Environmental Chemistry of the Elements", Academic Press, New York.
- Campbell GD, 2002a, "Geochemistry and Management of Pyritic Mine-Wastes: I.
 Characterisation", in Proceedings of Workshop on "Soil Technology Contaminated Land", February 2002, Centre for Land Rehabilitation, University of Western Australia.
- Campbell GD, 2002b, "Geochemistry and Management of Pyritic Mine-Wastes: II.
 Weathering Behaviour and Arsenic Solubility", in Proceedings of Workshop on
 "Soil Technology Contaminated Land", February 2002, Centre for Land
 Rehabilitation, University of Western Australia.
- Campbell GD, 2004, "Store/Release Covers in the Australian Outback: A Review", Section 13 in the Proceedings from the Australian Centre for Geomechanics

Graeme Campbell & Associates Pty Ltd

seminar on "Mine Closure – Towards Sustainable Outcomes", 5-6 August, Perth.

- Reimann C and de Caritat P, 1998, "Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist", Springer Verlag, Berlin.
- Smith A, 1992, "Prediction of Acid Generation Potential", in Hutchison IPG and Ellison RD (eds), "Mine Waste Management", Lewis Publishers, Michigan.
- Uren NC, 1992, "Forms, Reactions, and Availability of Nickel in Soils", *Advances in Agronomy*, <u>48</u>:141-203.
- U.S. Environmental Protection Agency, 1994, "Technical Document: Acid Mine Drainage Prediction", EPA530-R-94-036, NTIS PB94-201829.

TABLES

Graeme Campbell & Associates Pty Ltd

SITE-	DRILLHOLE &		EC	TOTAL-S	ANC	NAPP	AFP
SAMPLE	DOWNHOLE-	pН	[mS/cm]	(%)	kg H ₂ SO	O₄/tonne	CATEGORY
NO.	INTERVAL (m)					-	
1: Ferrugino	ous-Oxide-Waste						
623001	SMD64, 10-11	<u>7.2</u>	<u>0.35</u>	< 0.01	nm	nc	NAF
623002	SMD55, 7-8	<u>7.5</u>	<u>2.4</u>	< 0.01	nm	nc	NAF
623003	SMD43, 24-25	<u>8.9</u>	<u>0.72</u>	< 0.01	nm	nc	NAF
622017	SMD85, 2-4	<u>8.0</u>	<u>7.1</u>	0.12	3.8	-0.1	NAF
1A: Ferrugi	nous-Oxide-Waste-	[Minerali	sed				
623004	SMD85, 4-5	<u>7.6</u>	<u>7.5</u>	< 0.01	nm	nc	NAF
622019	SMD73, 2-3	<u>7.4</u>	<u>5.9</u>	3.7	8.0	nc	NAF
2: Silica-Car	bonate-Oxide-Wa	ste					
623006	SMD14, 24-25	<u>9.2</u>	<u>0.90</u>	< 0.01	nm	nc	NAF
623007	SMD50, 52-53	<u>9.1</u>	<u>0.60</u>	< 0.01	nm	nc	NAF
622022	SMD14, 28	<u>8.5</u>	<u>1.1</u>	< 0.01	nm	nc	NAF
623008	SMD27, 70-71	<u>8.9</u>	<u>1.4</u>	< 0.01	29	nc	NAF
623009	SMD13, 35-36	<u>8.7</u>	<u>0.64</u>	< 0.01	10	nc	NAF
622018	SMD13, 38-39	<u>7.9</u>	<u>1.2</u>	0.01	20	nc	NAF
2A: Silica-C	arbonate-Oxide-W	aste-[Min	eralised]				
623010	SMD71, 50-51	<u>9.2</u>	<u>0.49</u>	< 0.01	240	nc	NAF
622020	SMD73, 16-17	<u>7.7</u>	<u>1.3</u>	< 0.01	nm	nc	NAF

 Table 3.1:
 Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Regolith Samples (Six-Mile Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; NAF = Non-Acid Forming; PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values that are underscored correspond to measurements on sample-pastes, as employed in the AGC Woodward-Clyde (1991) study.

N.B. The Total-S value of 3.7 % reported for sample 622019 (from a down-hole depth of 2-3 m) is considered either an outlier, or that it corresponds to a SO₄-S value also of 3.7 %.

SITE-	TE- DRILLHO			EC	TOTAL-S	ANC	NAPP	AFP
SAMPLE	LITHOTYPE	DOWNHOLE-	pН	[mS/cm]	(%)	kg H ₂ SO	4/tonne	CATEGORY
NO.		INTERVAL (m)						
5A: Prima	ry-Zone-Hanging	gwall-Sulphidic-Wa	aste					
623031	Talc-Carbonate	SMD36, 210-211	<u>9.8</u>	<u>0.22</u>	0.3	nm	nc	NAF
623032	Antigorite	SMD82, 218-219	<u>9.6</u>	<u>0.32</u>	0.9	48	-20	PAF
623033	Antigorite-Liz.	SMD41, 158-159	<u>9.5</u>	<u>1.1</u>	0.4	nm	nc	NAF
623034	Antigorite-Liz.	SMD78, 398-399	<u>9.6</u>	<u>1.6</u>	1.2	110	-73	NAF
5B: Prima	<u>ry-Zone-Non-Sul</u>	phidic-Waste						
589179	Ultramafic-Adc.	SMD100, 542-543	9.8	0.87	1.5	370	-320	NAF
623035	Antigorite	SMD63, 242-243	<u>9.3</u>	<u>1.5</u>	0.1	42	-38	NAF
623036	Antigorite	SMD53, 187-188	<u>9.3</u>	<u>0.79</u>	< 0.01	nm	nc	NAF
623037	Antigorite	SMD83, 230-231	<u>9.6</u>	<u>0.85</u>	< 0.01	nm	nc	NAF
623038	Talc-Carbonate	SMD78, 271-272	<u>9.5</u>	<u>0.25</u>	0.3	23	-13	NAF
623039	Antigorite	SMG03, 207-208	<u>9.6</u>	<u>0.28</u>	< 0.01	nm	nc	NAF
623040	Antigorite-Liz.	SMD45, 201-202	<u>9.4</u>	<u>0.68</u>	0.1	60	-56	NAF
622025	Antigorite	SMD57, 182	<u>9.2</u>	<u>0.34</u>	0.02	nm	nc	NAF
622026	Talc-Carbonate	SMD54, 162	<u>8.3</u>	<u>0.43</u>	0.01	21	nc	NAF
Other-Was	<u>te</u>							
623054	Talc-Carbonate	SMG03, 94-95	<u>9.7</u>	<u>0.29</u>	0.2	52	-45	NAF
623055	Talc-Carbonate	SMD83, 298-299	<u>10.0</u>	<u>0.41</u>	< 0.01	nm	nc	NAF
622023	Talc-Carbonate	SMD37, 70	<u>9.1</u>	<u>0.69</u>	< 0.01	nm	nc	NAF
589185	Ultramafic-Carb.	SMG10, 230-231	9.8	0.22	0.05	nm	nc	NAF

Table 3.2: Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples (Hangingwall: Six-Mile Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; NAF = Non-Acid Forming;

PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values that are underscored correspond to measurements on sample-pastes, as employed in the AGC Woodward-Clyde (1991) study. The pH and EC values that are not underscored correspond to measurements on sample-slurries with a solid:solution ratio of *c*. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

SITE-		DRILLHOLE &		EC	TOTAL-S	ANC	NAPP	AFP
SAMPLE	LITHOTYPE	DOWNHOLE-	pН	[mS/cm]	(%)	kg H ₂ SO	4/tonne	CATEGORY
NO.		INTERVAL (m)	-					
6: Footwall-	Massive-Sulphides							
623041	VolcSediments	SMG01, 98-99	<u>8.6</u>	<u>1.0</u>	16.4	34	470	PAF
623042	VolcSediments	SMG04, 82.5-83.5	<u>8.0</u>	<u>0.92</u>	2.1	110	-45	PAF
622032		SMG01, 139	<u>8.3</u>	<u>0.52</u>	10.6	200	130	PAF
7: Footwall-	Sediment-Oxide-W	aste						
623043	VolcSediments	SMG01, 35-36	<u>7.4</u>	<u>0.63</u>	< 0.01	nm	nc	NAF
623044	VolcSediments	SMG02, 34-35	<u>7.8</u>	<u>0.39</u>	< 0.01	5.3	nc	NAF
623045	VolcSediments	SMG02, 64-65	<u>9.2</u>	<u>0.20</u>	< 0.01	nm	nc	NAF
623046	VolcSediments	SMG04, 48-49	<u>7.7</u>	<u>0.58</u>	< 0.01	nm	nc	NAF
623047	VolcSediments	SMG05, 50-51	<u>8.4</u>	<u>0.30</u>	< 0.01	nm	nc	NAF
622028		SMG03, 29	<u>8.6</u>	<u>2.0</u>	< 0.01	nm	nc	NAF
622030		SMG01, 17	<u>7.3</u>	<u>2.0</u>	< 0.01	2.2	nc	NAF
622031		SMG01, 31.5	<u>7.0</u>	<u>0.83</u>	< 0.01	nm	nc	NAF
589103	VolcSediments	SMD101, 80-81	8.8	0.40	< 0.01	nm	nc	NAF
7A: Footwal	l-Sediment-Fresh-	<u>Waste</u>						
623048	VolcSediments	SMG01, 150-151	<u>8.3</u>	<u>0.32</u>	5.0	21	140	PAF
623049	VolcSediments	SMG01, 210-211	<u>9.5</u>	<u>0.20</u>	< 0.01	nm	nc	NAF
623050	VolcSediments	SMG02, 190-191	<u>9.5</u>	<u>0.19</u>	< 0.01	nm	nc	NAF
623051	VolcSediments	SMG04, 106-107	<u>9.4</u>	<u>0.23</u>	< 0.01	nm	nc	NAF
623052	VolcSediments	SMG05, 155-156	<u>9.8</u>	<u>0.23</u>	< 0.01	nm	nc	NAF
623053	VolcSediments	SMG05, 229-230	<u>9.7</u>	<u>0.24</u>	< 0.01	nm	nc	NAF
622029		SMG04, 180	<u>9.7</u>	<u>0.17</u>	< 0.01	100	nc	NAF
589186	VolcSediments	SMG13, 239-240	10.1	0.17	0.01	nm	nc	NAF
589184	VolcSediments	SMG09, 120-121	9.5	0.31	0.02	76	nc	NAF
589180	VolcSediments	SMD101, 350-351	10.1	0.23	0.01	66	nc	NAF

Table 3.3: Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples (Footwall: Six-Mile Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; NAF = Non-Acid Forming;

PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values that are not underscored correspond to measurements on sample-pastes, as employed in the AGC Woodward-Clyde (1991) study. The pH and EC values that are not underscored correspond to measurements on sample-slurries with a solid:solution ratio of *c*. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

SITE-		DRILLHOLE &		EC	TOTAL-S	ANC	NAPP	AFP
SAMPLE	LITHOTYPE	DOWNHOLE-	pН	[mS/cm]	(%)	kg H ₂ S	O4/tonne	CATEGORY
NO.		INTERVAL (m)						
3: Supergen	e-Zone-Ore-Associ	ated-Sulphidic-Was	<u>ste</u>					
623011		SMD17, 84-85	<u>8.8</u>	<u>2.1</u>	0.1	24	-20	NAF
632012		SMD27, 98.5-99.5	<u>8.8</u>	<u>2.7</u>	< 0.01	nm	nc	NAF
622238		GPD11, 69	<u>7.1</u>	<u>1.8</u>	0.34	nm	nc	NAF
622239		GPD04, 104.8	<u>5.9</u>	<u>2.5</u>	1.5	15	31	NAF
589187	Ultramafic	SMG12, 99-100	9.8	0.86	1.0	380	-340	NAF
3A: Superge	ene-Zone-Hanging	vall-Sulphidic-Wast	e					
623013		SMD46, 75-76	<u>9.4</u>	<u>0.90</u>	< 0.01	nm	nc	NAF
623014	Talc-Carbonate	SMG03, 71-72	<u>8.5</u>	<u>1.2</u>	1.8	150	-94	NAF
623015	Antigorite	SMD42, 75-76	<u>9.6</u>	<u>0.43</u>	< 0.01	58	nc	NAF
589101	Ultramafic	SMD100, 82-83	9.2	0.43	0.02	55	nc	NAF
3B: Superge	ne-Zone-Non-Sulp	hidic-Waste						
623016	Antigorite	SMD25, 80-81	<u>9.6</u>	<u>0.29</u>	< 0.01	nm	nc	NAF
623017	Antigorite	SMD61, 62-63	<u>9.6</u>	<u>0.25</u>	< 0.01	nm	nc	NAF
623018	Antigorite	SMD49, 61-62	<u>9.5</u>	<u>0.41</u>	< 0.01	nm	nc	NAF
622021	LizOxide	SMD11, 80	<u>8.7</u>	<u>1.7</u>	0.18	22	-16	NAF
623019	LizAntigorite	SMD58, 82-89	<u>9.8</u>	<u>1.9</u>	< 0.01	nm	nc	NAF
623020	Talc-Carbonate	SMG03, 74-75	<u>8.7</u>	<u>0.88</u>	0.6	23	-4.6	NAF
4: Violarite-	Transition-Zone-O	re-Associated-Sulp	hidic-Wa	aste				
623021	Antigorite	SMD66, 133-134	<u>9.5</u>	<u>0.24</u>	0.2	nm	nc	NAF
623022	Lizardite	SMD61, 140-141	<u>9.2</u>	<u>1.2</u>	0.5	56	-40	NAF
589188	Ultramafic	SMG12, 110-111	9.6	0.71	1.1	nm	nc	PAF (?)
4A: Violarit	e-Transition-Zone-	Hangingwall-Sulph	idic-Wa	ste				
623023	Antigorite	SMD21, 110-111	<u>9.3</u>	<u>0.51</u>	0.2	nm	nc	NAF
623024	Antigorite-Liz.	SMD49, 101-102	<u>9.6</u>	<u>1.5</u>	0.4	140	-120	NAF
589105	Ultramafic	SMD97, 120-121	9.9	0.27	0.05	nm	nc	NAF
4B: Violarite	-Transition-Zone-l	Non-Sulphidic-Wast	te					
623025	Antigorite	SMD68, 104-105	<u>9.4</u>	<u>0.72</u>	0.1	60	56	NAF
623026	Antigorite	SMG06, 98-99	<u>9.7</u>	<u>0.23</u>	< 0.01	nm	nc	NAF
623027	Antigorite-Liz.	SMD13, 135-136	<u>9.6</u>	<u>2.0</u>	< 0.01	nm	nc	NAF
623028	Lizardite	SMD42, 124-125	<u>9.6</u>	<u>1.2</u>	< 0.01	nm	nc	NAF
622024	Lizardite	SMD26, 130	<u>9.8</u>	<u>0.74</u>	0.03	84	nc	NAF
622027		SMG03, 143	<u>9.6</u>	<u>0.17</u>	< 0.01	14	nc	NAF
5: Primary-	Zone-Ore-Associat	ed-Sulphidic-Waste						
623029	Antigorite	SMD81, 286-287	<u>9.6</u>	<u>0.49</u>	1.1	52	-18	PAF
623030	Antigorite-Liz.	SMD49, 340-341	<u>9.4</u>	<u>1.2</u>	0.8	24	0.5	PAF
589183	Ultramafic-Ortho.	SMD98, 400-401	10.1	0.30	0.04	nm	nc	NAF
5A: Primary	-Zone-Ore-Hangir	ngwall-Sulphidic-W	<u>aste</u>					
589182	Ultramafic-Ortho	SMD97 245-246	10.1	0.30	0.08	nm	ne	NAF

Table 3.4: Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples (Internal: Six-Mile Deposit)

 589182
 Ultramafic-Ortho.
 SMD97, 245-246
 10.1
 0.30
 0.08
 nm
 nc
 NAF

 Notes:
 EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; NAF = Non-Acid Forming;

 PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values that are not underscored correspond to measurements on sample-pastes, as employed in the AGC Woodward-Clyde (1991) study. The pH and EC values that are not underscored correspond to measurements on sample-slurries with a solid:solution ratio of *c*. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

Table 3.5:	Α	ssay Results f	or Rego	lith an	d Was	te-Bedi	rock Sa	mples	(Six-N	Aile De	eposit)	

r	1											
SITE-		DRILLHOLE &	TOTAL-S	Ni	Cr	Со	Cu	Pb	Zn	As	Mn	Fe
SAMPLE	LITHOTYPE	DOWNHOLE-	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(%)
NO.		INTERVAL (m)										
1: Ferrugin	10us-Oxide-Was	<u>te</u>										
622017		SMD85, 2-4	0.12	3,700	1,300	120	40	130	110	50	180	15.1
1A: Ferrug	<u>inous-Oxide-Wa</u>	aste-[Mineralised]										
622019		SMD73, 2-3	3.7	1,200	3,900	45	160	5	90	80	100	5.8
2: Silica-Ca	arbonate-Oxide-	<u>Waste</u>										
623008		SMD27, 70-71	< 0.01	260	280	80	10	10	30	20	230	2.1
623009		SMD13, 35-36	< 0.01	2,100	820	120	10	15	35	22	830	4.6
2A: Silica-	Carbonate-Oxid	e-Waste-[Mineralis	sed]									
623010		SMD71, 50-51	< 0.01	6,600	790	140	450	10	55	34	690	3.6
3: Superge	ne-Zone-Ore-As	sociated-Sulphidic	-Waste									
623011		SMD17, 84-85	0.1	1,500	470	80	60	<5	30	12	290	3.0
622239		GPD04, 104.8	1.5	6,100	260	28	140	5	45	28	460	3.6
3A: Superg	gene-Zone-Hang	ingwall-Sulphidic-	Waste									
623014	Talc-Carbonate	SMG03, 71-72	1.8	2,600	640	110	220	10	45	190	930	5.3
623015	Antigorite	SMD42, 75-76	< 0.01	1,700	740	80	10	<5	30	17	400	3.6
3B: Superg	gene-Zone-Non-S	Sulphidic-Waste										
623018	Antigorite	SMD49, 61-62	< 0.01	2.100	1.100	110	<5	<5	40	42	760	4.2
622021	Liz-Oxide	SMD11, 80	0.18	2.800	430	100	160	10	60	7	290	3.1
623020	Talc-Carbonate	SMG03 74-75	0.6	2,600	960	110	110	10	60	630	870	4.6
4: Violarite	e-Transition-Zor	e-Ore-Associated-	Sulphidic-V	Vaste								
623022	Lizardite	SMD61 140-141	0.5	1 800	330	70	45	<5	25	20	250	19
4A: Violari	ite-Transition-Z	one-Hangingwall-S	ulphidic-W	aste	220	, 0		U		20	200	1.7
623024	Antigorite-Liz	SMD49_101-102	0.4	3 800	530	130	320	5	35	19	350	4.0
4B: Violari	te-Transition-Zo	ne-Non-Sulphidic-	Waste	5,000	000	150	520	Ũ	50	.,	500	
623025	Antigorite	SMD68 104-105	0.1	2 700	340	95	<5	<5	35	75	510	26
622024	Lizardite	SMD26_130	0.03	2,700	420	55	20	10	35	11	250	2.0
622024	Elzardite	SMG03 143	<0.05	480	1 800	65	35	10	50	6	850	4.2
5. Primary	-Zone-Ore-Asso	ciated-Sulnhidic-W	<0.01 /aste	-00	1,000	05	55	10	50	0	0.50	т.2
623020	Antigorite	SMD81 286 287	1 1	3 000	510	110	150	<5	<5	15	350	28
623029	Antigorita Liz	SMD40, 240, 241	0.8	3,000	450	100	190	5	20	0	400	2.0
54. Prima	ry-Zone-Ore-Ha	ngingwall_Sulnhidi	0.0 ic-Waste	3,000	430	100	160	5	30	9	400	3.2
672022	Antigorita	SMD92 218 210	0.0	2 000	400	95	120	10	25	12	200	2.2
622024	Antigorita Liz	SMD82, 218-219	0.9	2,000	250	63 60	05	10	33 70	13	590	3.2 2.0
023034 5 D. Drim or	Antigorite-Liz.	SMD/8, 598-599	1.2	1,400	550	00	83	10	70	11	380	3.9
(22025	y-zone-ron-su	SMD(2, 242, 242	0.1	2 800	590	40	5	-5	40	5	140	2.0
623035	Antigorite	SMD63, 242-243	0.1	2,800	580	40	5 25	< 5 - 5	40	5 20	440	3.8
623038	Taic-Carbonate	SMD /8, 2/1-2/2	0.5	3,400	470	95	25	< 5 - 5	35	20	510	2.2
623040	Antigorite-Liz.	SMD45, 201-202	0.1	2,700	380	95	<5	<5	35	14	530	2.8
622026	Talc-Carbonate	SMD54, 162	0.01	1,500	460	70	35	10	55	4	390	2.9
o: Footwall	-Massive-Sulphi	ides		1 400	000	100	210	•				10.0
623041	VolcSediments	SMG01, 98-99	16.4	1,400	890	120	310	20	250	3	/,400	42.9
623042	VolcSediments	SMG04, 82.5-83.5	2.1	75	95	15	120	15	65	4	17,000	21.4
622032		SMG01, 139	10.6	80	310	30	40	5	130	15	13,000	22.4
7: Footwal	-Sediment-Oxid	e-Waste										
622030		SMG01, 17	< 0.01	190	85	20	25	15	80	6	1,700	13.0
7A: Footwall-Sediment-Fresh-Waste			_									
623048 VolcSediments SMG01, 150-151				40	260	10	25	15	25	10	2,800	7.1
623049	VolcSediments	SMG01, 210-211	< 0.01	50	200	10	40	25	50	50	880	15.1
623050 VolcSediments SM		SMG02, 190-191	< 0.01	35	120	15	35	30	55	11	710	2.9
622029	I	SMG04, 180	< 0.01	55	140	15	20	<5	30	40	890	2.9
Other-Was	<u>te</u>											
623054	Talc-Carbonate	SMG03, 94-95	0.2	1,700	790	85	75	<5	65	310	1,100	5.2

SITE-		DRILLHOLE &		EC	TOTAL-S	SO ₄ -S	Sulphide-S	CO ₃	ANC	NAPP	NAG		AFP
SAMPLE	LITHOTYPE	DOWNHOLE-	pН	[mS/cm]	(%)	(%)	(%)	(%)	kg F	I2SO4/to	onne	NAG-pH	CATEGORY
NO.		INTERVAL (m)											
1: Ferrugine	ous-Oxide-Waste												
589189		GPG18, 2-3	7.6	0.24	0.03	0.03	< 0.01	nm	13	nc	< 0.5	6.9	NAF
589121		GPD76, 1-2	7.3	0.28	< 0.01	< 0.01	< 0.01	< 0.05	10	nc	< 0.5	6.5	NAF
589134		GPG04, 2-3	10.0	0.29	< 0.01	< 0.01	< 0.01	nm	490	nc	< 0.5	9.2	NAF
589126		GPD77, 2-3	8.2	6.5	0.64	0.58	0.06	nm	160	nc	< 0.5	7.9	NAF
589138		GPG05, 3-4	6.7	4.3	0.06	0.07	< 0.01	nm	3.3	nc	< 0.5	4.9	NAF
589143	Ultramafic	GPG06, 3-4	8.3	4.6	0.76	0.63	0.13	nm	61	-57	< 0.5	8.7	NAF
589152	Ultramafic	GPG11, 5-6	9.1	0.78	< 0.01	< 0.01	< 0.01	0.15	30	nc	< 0.5	7.4	NAF
<u>1A: Ferrugi</u>	nous-Oxide-Wast	te-[Mineralised]											
589131	Ultramafic-Carb.	GPG03, 5-6	9.2	0.33	0.03	< 0.01	0.03	0.18	44	nc	< 0.5	8.6	NAF
589135	Ultramafic	GPG04, 5-6	7.9	0.39	< 0.01	< 0.01	< 0.01	nm	21	nc	< 0.5	7.7	NAF
589111	Ultramafic	GNM04, 65-66	9.4	0.41	0.10	0.02	0.08	11	200	nc	< 0.5	10.8	NAF
2: Silica-Ca	rbonate-Oxide-W	aste											
589114	Ultramafic-Carb.	GPD73, 39-40	8.9	0.18	< 0.01	< 0.01	< 0.01	nm	110	nc	< 0.5	8.4	NAF
589116	Ultramafic-Carb.	GPD74, 25-26	9.7	0.096	< 0.01	< 0.01	< 0.01	nm	190	nc	< 0.5	8.7	NAF
589119	Ultramafic-Carb.	GPD75, 50-51	9.8	0.22	< 0.01	< 0.01	< 0.01	1.1	36	nc	< 0.5	9.2	NAF
589133	Ultramafic-Carb.	GPG03, 80-81	9.1	0.84	< 0.01	< 0.01	< 0.01	nm	130	nc	< 0.5	9.1	NAF
589124	Ultramafic	GPD76, 89-90	8.9	0.18	< 0.01	< 0.01	< 0.01	nm	47	nc	< 0.5	6.2	NAF
589130	Ultramafic	GPD78, 78-79	9.0	0.97	0.05	0.06	< 0.01	< 0.05	51	nc	< 0.5	8.3	NAF
589132	Ultramafic	GPG03, 27-28	8.1	1.4	< 0.01	< 0.01	< 0.01	nm	94	nc	< 0.5	9.2	NAF
2A: Silica-C	arbonate-Oxide-	Waste-[Mineralise	ed]										
589147	Ultramafic	GPG07, 19-20	9.2	0.97	0.03	0.02	0.01	nm	160	nc	< 0.5	8.4	NAF
589153	Ultramafic	GPG11, 20-21	9.2	0.89	0.53	0.05	0.48	13	240	-220	< 0.5	9.6	NAF
589154	Ultramafic	GPG11, 50-51	9.3	1.1	0.44	0.09	0.35	12	230	-210	< 0.5	9.8	NAF

 Table 4.1:
 Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Regolith Samples (Goliath Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; NAG = Net-Acid Generation; AFP = Acid-Formation Potential; NAF = Non-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values correspond to measurements on sample-slurries with a solid:solution ratio of c. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

SITE-		EC	TOTAL-S	SO ₄ -S	Sulphide-S	CO ₃	ANC	NAPP	NAG		AFP
SAMPLE	pН	[mS/cm]	(%)	(%)	(%)	(%)	kg]	H ₂ SO ₄ /to	onne	NAG-pH	CATEGORY
NO.	-										
7B: Hangi	ngwall	-Sediment	-Oxide-Wa	<u>ste</u>							
589120	8.9	0.25	0.07	0.01	0.06	nm	54	nc	< 0.5	7.1	NAF
589122	7.9	0.13	< 0.01	< 0.01	< 0.01	nm	7.1	nc	< 0.5	4.8	NAF
589127	8.3	0.24	< 0.01	< 0.01	< 0.01	0.05	24	nc	< 0.5	6.4	NAF
589129	8.6	0.40	< 0.01	< 0.01	< 0.01	nm	180	nc	< 0.5	9.8	NAF
589178	9.5	0.20	0.25	0.06	0.19	nm	110	-100	< 0.5	11.8	NAF
589145	9.6	0.26	0.03	0.01	0.02	nm	110	nc	< 0.5	8.8	NAF
589156	9.3	0.095	< 0.01	< 0.01	< 0.01	nm	58	nc	< 0.5	7.1	NAF
589157	9.3	0.24	< 0.01	< 0.01	< 0.01	nm	51	nc	< 0.5	6.8	NAF
589158	9.9	0.27	< 0.01	< 0.01	< 0.01	nm	61	nc	< 0.5	7.1	NAF
7C: Hangi	ngwall	-Sediment	-Fresh-Wa	<u>ste</u>							
589168	9.7	0.16	0.02	< 0.01	0.02	nm	44	nc	< 0.5	8.2	NAF
589169	10.1	0.28	0.03	0.01	0.02	nm	78	nc	< 0.5	7.7	NAF
589177	8.8	0.82	1.1	0.05	1.1	1.7	67	-33	11	2.9	PAF
589196	9.8	0.24	< 0.01	< 0.01	< 0.01	1.4	76	nc	< 0.5	10.4	NAF
589173	9.9	0.17	< 0.01	< 0.01	< 0.01	nm	68	nc	< 0.5	9.6	NAF
589197	9.7	0.16	0.01	0.01	< 0.01	nm	38	nc	< 0.5	7.6	NAF
589198	10.3	0.33	0.04	0.02	0.02	nm	14	nc	< 0.5	7.8	NAF
589146	9.5	0.21	0.07	0.02	0.05	nm	63	nc	< 0.5	7.9	NAF
7D: Hangi	ngwall	-Mafic-Ox	<u>kide-Waste</u>								
589123	9.7	0.28	0.01	< 0.01	0.01	nm	79	nc	nm	nm	NAF
589136	8.4	0.19	< 0.01	< 0.01	< 0.01	nm	65	nc	< 0.5	6.9	NAF
589139	7.9	0.67	< 0.01	< 0.01	< 0.01	nm	24	nc	nm	nm	NAF
589161	9.3	0.18	0.07	0.01	0.06	1.2	42	nc	< 0.5	8.4	NAF
589159	8.0	0.14	< 0.01	< 0.01	< 0.01	nm	44	nc	nm	nm	NAF
589110	9.7	0.34	< 0.01	< 0.01	< 0.01	nm	53	nc	nm	nm	NAF
589118	8.1	0.11	< 0.01	< 0.01	< 0.01	nm	22	nc	nm	nm	NAF
7E: Hangi	ngwall	Mafic-Fr	esh-Waste								
589125	9.8	0.21	0.08	< 0.01	0.08	0.09	68	nc	<0.5	6.8	NAF
589128	10.2	0.26	< 0.01	< 0.01	< 0.01	nm	92	nc	<0.5	7.5	NAF
589174	9.9	0.15	0.10	0.03	0.07	0.81	67	nc	< 0.5	11.3	NAF

Table 4.2: Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples (Hangingwall: Goliath Deposit)

Notes: EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; NAG = Net-Acid Generation; AFP = Acid-Formation Potential;

NAF = Non-Acid Forming; PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.The pH and EC values correspond to measurements on sample-slurries with a solid:solution ratio of *c*. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

SIT	E-		EC	TOTAL-S	SO ₄ -S	Sulphide-S	CO ₃	ANC	NAPP	NAG		AFP
SAMF	PLE	pН	[mS/cm]	(%)	(%)	(%)	(%)	kg H ₂ SO ₄ /tonne			NAG-pH	CATEGORY
NO).											
<u>6: Foo</u>	twall	-Massiv	e-Sulphid	es								
5891	90	9.6	0.31	0.73	< 0.01	0.72	1.4	100	-77	< 0.5	10.4	NAF
5891	91	8.0	0.72	4.0	0.05	4.0	0.63	38	85	70	2.3	PAF
5891	64	8.6	0.75	3.5	0.09	3.5	0.48	55	52	51	2.6	PAF
7: Foo	twall	-Sedime	ent-Oxide-	Waste								
5891	40	9.3	0.39	< 0.01	< 0.01	< 0.01	nm	65	nc	< 0.5	10.0	NAF
5891	41	9.7	0.25	0.02	< 0.01	0.01	nm	33	nc	< 0.5	7.4	NAF
5891	42	9.2	0.57	0.35	0.06	0.29	nm	70	-61	< 0.5	10.9	NAF
5891	63	10.2	0.34	< 0.01	< 0.01	< 0.01	nm	32	nc	< 0.5	7.3	NAF
5891	49	9.0	0.36	< 0.01	< 0.01	< 0.01	1.5	48	nc	< 0.5	8.7	NAF
5891	50	8.8	0.38	< 0.01	< 0.01	< 0.01	nm	110	nc	< 0.5	8.7	NAF
5891	51	8.8	0.31	< 0.01	< 0.01	< 0.01	nm	43	nc	< 0.5	8.3	NAF
5891	62	8.0	0.88	0.01	0.02	< 0.01	nm	32	nc	< 0.5	8.9	NAF
5891	60	9.6	0.14	< 0.01	< 0.01	< 0.01	nm	52	nc	< 0.5	7.5	NAF
7A: Footwall-Sediment-Fresh-Waste												
5891	65	9.7	0.28	0.02	0.01	0.01	nm	72	nc	< 0.5	11.3	NAF
5891	66	9.6	0.19	0.17	0.04	0.13	2.4	90	-86	< 0.5	11.4	NAF
5891	67	9.8	0.19	0.07	0.01	0.06	nm	38	nc	< 0.5	8.3	NAF
5891	92	9.6	0.24	0.06	< 0.01	0.06	0.86	77	nc	< 0.5	10.5	NAF
5891	93	9.5	0.19	0.02	0.01	0.01	nm	96	nc	< 0.5	11.3	NAF
5891	94	9.7	0.18	0.04	0.01	0.03	nm	140	nc	< 0.5	11.8	NAF
5891	95	10.2	0.27	0.05	< 0.01	0.05	nm	27	nc	< 0.5	9.2	NAF

Table 4.3:Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples
(Footwall: Goliath Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; NAG = Net-Acid Generation; AFP = Acid-Formation Potential; NAF = Non-Acid Forming; PAF = Potentially-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values correspond to measurements on sample-slurries with a solid:solution ratio of c. 1:2.5 (w/w), as employed in the ANSTO (1996) study.

SITE-		DRILLHOLE &		EC	TOTAL-S	SO ₄ -S	Sulphide-S	CO3	ANC	NAPP	NAG		AFP
SAMPLE	LITHOTYPE	DOWNHOLE-	pН	[mS/cm]	(%)	(%)	(%)	(%)	kg	H ₂ SO ₄ /to	nne	NAG-pH	CATEGORY
NO.		INTERVAL (m)											
3: Supergene-Zone-Ore-Associated-Sulphidic-Waste													
589148	Ultramafic	GPG07, 39-40	9.6	0.22	< 0.01	< 0.01	< 0.01	16	430	nc	< 0.5	10.6	NAF
589144	Ultramafic	GPG06, 70-71	8.7	1.9	0.94	0.16	0.78	15	380	-350	< 0.5	8.7	NAF
3A: Superg	gene-Zone-Hanging												
589115	Ultramafic	GPD73, 58-59	9.5	0.25	0.26	0.01	0.25	0.98	39	-31	< 0.5	7.6	NAF
589117	Ultramafic-Carb.	GPD74, 99-100	10.2	0.24	0.12	0.04	0.08	13	310	nc	< 0.5	10.2	NAF
4: Transiti	on-Zone-Ore-Asso	ciated-Sulphidic-V											
589113	Ultramafic	GNM04, 83-84	9.9	0.18	0.05	< 0.01	0.05	8.0	180	nc	< 0.5	10.7	NAF
4A: Transition-Zone-Ore-Hangingwall-Sulphidic-Wast													
589155	Ultramafic	GPG11, 60-61	9.2	0.39	0.59	0.03	0.56	1.3	100	-82	< 0.5	7.8	NAF
4B: Transi	<u>tion-Zone-Non-Sul</u>												
589112	Ultramafic	GNM04, 83-84	10.0	0.20	0.07	0.02	0.05	nm	300	nc	< 0.5	11.6	NAF
589137	Ultramafic	GPG04, 100-101	8.4	1.5	0.68	0.15	0.53	nm	95	-78	< 0.5	7.0	NAF
5: Primary	-Zone-Ore-Associa												
589175	Ultramafic	GPD78, 290-291	9.7	0.21	0.61	0.07	0.54	13	250	-230	< 0.5	9.9	NAF
5A: Primary-Zone-Ore-Hangingwall-Sulphidic-Waste													
589171	Ultramafic-Meso.	GPD77, 273-274	9.6	0.37	1.2	0.03	1.2	5.5	180	-140	< 0.5	10.3	NAF
5B: Primai	ry-Zone-Non-Sulph												
589172	Ultramafic-Adcum.	GPD77, 290-291	9.5	0.37	0.14	0.03	0.11	nm	280	-270	< 0.5	10.6	NAF
589170	Ultramafic-Adcum.	GPD76, 292-293	9.8	0.92	0.27	0.03	0.24	8.7	290	-280	< 0.5	11.2	NAF

 Table 4.4:
 Acid-Base-Analysis, Salinity and Net-Acid-Generation Results for Waste-Bedrock Samples (Internal: Goliath Deposit)

Notes:

EC = Electrical Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; Net-Acid Generation; AFP = Acid-Formation Potential; NAF = Non-Acid Forming; nm = not measured; nc = not calculated.

The pH and EC values correspond to measurements on sample-slurries with a solid:solution ratio of c. 1:2.5 (w/w), as employed in the ANSTO (1996) study.