

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PEK1822

Client Details

Client	Rottnest Island Authority
Contact	David Pond
Address	PO Box 693, FREMANTLE, WA, 6959
Sample Details	
Your Reference	South Thomson Barge Development
Number of Samples	3 Water
Date Samples Received	24/11/2023
Date Instructions Received	24/11/2023
Analysis Details	
Please refer to the following pages for	results, methodology summary and quality control data.

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

Date Results Requested by	29/11/2023
Date of Issue	28/11/2023

NATA Accreditation Number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Authorisation Details

Results Approved By

Lien Tang, Assistant Operations Manager

Laboratory Manager

Michael Kubiak

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PEK1822-01	ArmyJetty1-20231120	Water	20/11/2023	24/11/2023
PEK1822-02	ArmyJetty2-20231120	Water	20/11/2023	24/11/2023
PEK1822-03	ArmyJetty3-20231123	Water	23/11/2023	24/11/2023

Inorganics - Physical Parameters (Water)

Envirolab ID	Units	PQL	PEK1822-01	PEK1822-02	PEK1822-03
Your Reference			ArmyJetty1-202 31120	ArmyJetty2-202 31120	ArmyJetty3-202 31123
Date Sampled			20/11/2023	20/11/2023	23/11/2023
Total Suspended Solids	mg/L	5.0	<5.0	<5.0	<5.0
Turbidity	NTU	0.10	[NA]	[NA]	0.66

Method Summary

Method ID	Methodology Summary
INORG-019	Suspended Solids - determined gravimetrically by filtration of the sample. The solids are dried at 104±5°C
INORG-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Data Quality Assessment Summary PEK1822

Client Details

Client	Rottnest Island Authority
Your Reference	South Thomson Barge Development
Date Issued	28/11/2023

Recommended Holding Time Compliance

No recommended holding time exceedances

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	Yes	No Outliers
Matrix Spike	Yes	No Outliers
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	Yes	No Outliers

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary PEK1822

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
TSS Water	1-2	20/11/2023	24/11/2023	24/11/2023	Yes
	3	23/11/2023	24/11/2023	24/11/2023	Yes
Turbidity Water	3	23/11/2023	24/11/2023	27/11/2023	Yes

Recommended Holding Time Compliance

INORG-022 | Inorganics - Physical Parameters (Water) | Batch BEK2969

				DUP1	LCS %
Analyte	Units	PQL	Blank	BEK2969-DUP1#	
-				Samp QC RPD %	
Turbidity	NTU	0.10	<0.10	0.210 0.200 4.88	95.0

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-019 | Inorganics - Physical Parameters (Water) | Batch BEK3045

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEK3045-DUP1#	BEK3045-DUP2#	
				Samp QC RPD %	Samp QC RPD %	
Total Suspended Solids	mg/L	5.0	<5.0	353 320 9.90	192 185 3.97	86.0

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PEL1754

Client Details

Client	Rottnest Island Authority
Contact	David Pond
Address	PO Box 693, FREMANTLE, WA, 6959
Sample Details	
Your Reference	South Thomson Barge Landing - Baseline Water Quality Monitoring
Number of Samples	6 Water
Date Samples Received	29/12/2023
Data Instructions Resoluted	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

Date Results Requested by	09/01/2024
Date of Issue	09/01/2024

NATA Accreditation Number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Authorisation Details

Results Approved By	Diego Bigolin, Supervisor, Inorganics Heram Halim, Operations Manager Lien Tang, Assistant Operations Manager Michael Mowle, Inorganics Supervisor Sally Rogers, Senior Microbiological Analyst Travis Carey, Organics Supervisor
Laboratory Manager	Michael Kubiak

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PEL1754-01	ST-01	Water	29/12/2023	29/12/2023
PEL1754-02	ST-02	Water	29/12/2023	29/12/2023
PEL1754-03	ST-03	Water	29/12/2023	29/12/2023
PEL1754-04	ST-04	Water	29/12/2023	29/12/2023
PEL1754-05	ST-05	Water	29/12/2023	29/12/2023
PEL1754-06	ST-06	Water	29/12/2023	29/12/2023

Volatile TRH and BTEX (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
TRH C6-C9	µg/L	10	<10	<10	<10	<10	<10
TRH C6-C10	µg/L	10	<10	<10	<10	<10	<10
TRH C6-C10 less BTEX (F1)	µg/L	10	<10	<10	<10	<10	<10
Methyl tert butyl ether (MTBE)	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
meta+para Xylene	μg/L	2.0	<2.0	<2.0	<2.0	<2.0	<2.0
ortho-Xylene	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total Xylene	μg/L	3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Naphthalene (value used in F2 calc)	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%		96.7	94.5	95.8	94.9	97.6
Surrogate Toluene-D8	%		95.8	94.6	94.3	96.7	96.4
Surrogate 4-Bromofluorobenzene	%		105	103	104	105	100
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
Date Sampled			29/12/2023				
TRH C6-C9	µg/L	10	<10				
TRH C6-C10	μg/L	10	<10				
TRH C6-C10 less BTEX (F1)	µg/L	10	<10				
Methyl tert butyl ether (MTBE)	µg/L	1.0	<1.0				
Benzene	µg/L	1.0	<1.0				
Toluene	µg/L	1.0	<1.0				
Ethylbenzene	µg/L	1.0	<1.0				
meta+para Xylene	µg/L	2.0	<2.0				
ortho-Xylene	µg/L	1.0	<1.0				
Total Xylene	µg/L	3.0	<3.0				

Naphthalene (value used in F2 calc)

Surrogate Toluene-D8

Surrogate Dibromofluoromethane

Surrogate 4-Bromofluorobenzene

µg/L

µg/L

%

%

%

1.0

<1.0 97.8

93.6

105

Semi-volatile TRH (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	100	<100	<100	<100	<100	<100
TRH C29-C36	µg/L	100	<100	<100	<100	<100	<100
Total +ve TRH C10-C36	μg/L	50	<50	<50	<50	<50	<50
TRH >C10-C16	µg/L	50	<50	<50	<50	<50	<50
TRH >C10-C16 less Naphthalene F2	µg/L	50	<50	<50	<50	<50	<50
TRH >C16-C34 (F3)	µg/L	100	<100	<100	<100	<100	<100
TRH >C34-C40 (F4)	µg/L	100	<100	<100	<100	<100	<100
Total +ve TRH >C10-C40	μg/L	50	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%		70.8	69.9	76.8	73.3	76.4

Envirolab ID	Units	PQL	PEL1754-06	
Your Reference			ST-06	
Date Sampled			29/12/2023	
TRH C10-C14	µg/L	50	<50	
TRH C15-C28	µg/L	100	<100	
TRH C29-C36	µg/L	100	<100	
Total +ve TRH C10-C36	µg/L	50	<50	
TRH >C10-C16	µg/L	50	<50	
TRH >C10-C16 less Naphthalene F2	µg/L	50	<50	
TRH >C16-C34 (F3)	µg/L	100	<100	
TRH >C34-C40 (F4)	µg/L	100	<100	
Total +ve TRH >C10-C40	µg/L	50	<50	
Surrogate o-Terphenyl	%		87.6	

Acid Extractable Metals (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Phosphorus	mg/L	0.050	<0.10 [4]	<0.25 [4]	<0.25 [4]	<0.25 [4]	<0.25 [4]
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
Date Sampled			29/12/2023				
Phosphorus	mg/L	0.050	<0.25 [4]				

Dissolved Low Level Metals (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Arsenic	μg/L	1.0	1.6	1.6	1.8	2.0	1.8
Boron	µg/L	20	4600	4400	4400	4400	4400
Barium	µg/L	1.0	5.5	5.7	5.4	5.9	6.0
Beryllium	µg/L	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cadmium	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cobalt	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	µg/L	1.0	<1.0	9.6	<1.0	<1.0	<1.0
Copper	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury	µg/L	0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Manganese	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Lead	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Selenium	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium	μg/L	1.0	2.2	2.3	2.2	2.1	2.1
Zinc	µg/L	1.0	<1.0	620	<1.0	11	<1.0
Envirolah ID	Unite	DOI	DEI 1754-06				
Envirolab ID Your Reference	Units	PQL	PEL1754-06 ST-06				
Envirolab ID Your Reference Date Sampled	Units	PQL	PEL1754-06 ST-06 29/12/2023				
Envirolab ID Your Reference Date Sampled	Units	PQL	PEL1754-06 ST-06 29/12/2023 2.0				
Envirolab ID Your Reference Date Sampled Arsenic Boron	Units µg/L µg/L	PQL 1.0 20	PEL1754-06 ST-06 29/12/2023 2.0 4300				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium	Units μg/L μg/L μg/L	PQL 1.0 20 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium	Units µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium	Units μg/L μg/L μg/L μg/L μg/L	PQL 1.0 20 1.0 0.50 0.10	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt	Units μg/L	PQL 1.0 20 1.0 0.50 0.10 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium	Units μg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper	Units μg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Mercury	Units μg/L μg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 0.050	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Mercury Manganese	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 0.050 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Mercury Manganese Nickel	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 0.050 1.0 1.0 1.0	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Cobalt Cobalt Coromium Copper Mercury Manganese Nickel Lead	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Barium Cadmium Cobalt Chromium Copper Mercury Manganese Nickel Lead Selenium	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1				
Envirolab ID Your Reference Date Sampled Arsenic Boron Barium Beryllium Cadmium Cobalt Cobalt Cobalt Chromium Copper Mercury Manganese Nickel Lead Selenium	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	PQL 1.0 20 1.0 0.50 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1	PEL1754-06 ST-06 29/12/2023 2.0 4300 5.8 <0.50 <0.10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1				

Inorganics - Physical Parameters (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Total Dissolved Solids	mg/L	5.0	40000	41000	41000	41000	41000
Total Suspended Solids	mg/L	5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
Date Sampled			29/12/2023				
Total Dissolved Solids	mg/L	5.0	40000				
Total Suspended Solids	mg/L	5.0	<5.0				

Inorganics - Ionic Balance and Indexes (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Bicarbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	130	130	130	130	130
Carbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hydroxide OH- as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Total Alkalinity as CaCO3	mg/L as CaCO3	5.0	130	130	130	130	130
Chloride	mg/L	1.0	19000	19000	19000	20000	19000
Sulfate	mg/L	1.0	2600	2800	2800	2800	2800
Calcium	mg/L	0.50	390	400	400	400	400
Magnesium	mg/L	0.50	1200	1200	1300	1200	1200
Potassium	mg/L	0.50	370	380	380	380	390
Sodium	mg/L	0.50	11000	11000	12000	12000	12000
Hardness as CaCO3	mg/L	3.0	6000	6100	6200	6100	6100
Ionic Balance	%		2.1	1.9	2.3	1.6	2.3
Total Anions	mg/L	7.0	22000	22000	22000	22000	22000
Anions as meq	meq/L	0.59	600	610	610	610	610
Total Cations	mg/L	2.0	13000	13000	14000	14000	14000
Cations as meq	meq/L	0.10	620	630	640	630	640
Envirolah ID	Unite	POI	PEI 1754-06				
Envirolab ID Your Reference	Units	PQL	PEL1754-06 ST-06				
Envirolab ID Your Reference Date Sampled	Units	PQL	PEL1754-06 ST-06 29/12/2023				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3	Units mg/L as CaCO3	PQL 5.0	PEL1754-06 ST-06 29/12/2023 130				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	Units mg/L as CaCO3 mg/L as CaCO3	PQL 5.0 5.0	PEL1754-06 ST-06 29/12/2023 130 <5.0				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3	PQL 5.0 5.0 5.0	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3	PQL 5.0 5.0 5.0 5.0	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L	PQL 5.0 5.0 5.0 5.0 1.0	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L mg/L	PQL 5.0 5.0 5.0 5.0 1.0 1.0	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 5.0 1.0 1.0 1.0 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium	Units mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium	Units mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 1.0 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 390				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Sodium	Units mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 1300 390 12000				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Sodium Hardness as CaCO3	Units mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 1300 390 12000 6200				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Sodium Hardness as CaCO3 Ionic Balance	Units mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 1300 390 12000 6200 2.2				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Potassium Sodium Hardness as CaCO3 Ionic Balance Total Anions	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 1300 1300 1300 6200 6200 2.2 2.2				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Potassium Sodium Hardness as CaCO3 Ionic Balance Total Anions Anions as meq	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50 3.0 7.0 0.59	PEL1754-06 ST-06 29/12/2023 130 <5.0 5.0 130 20000 2900 400 1300 1300 1300 6200 6200 2.2 2.2 23000 610				
Envirolab ID Your Reference Date Sampled Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Hydroxide OH- as CaCO3 Total Alkalinity as CaCO3 Chloride Sulfate Calcium Magnesium Potassium Potassium Sodium Hardness as CaCO3 Ionic Balance Total Anions Anions as meq Total Cations	Units mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PQL 5.0 5.0 5.0 1.0 1.0 0.50 0.50 0.50 0.50 3.0 7.0 0.59 2.0	PEL1754-06 ST-06 29/12/2023 130 <5.0 <5.0 130 20000 2900 400 1300 1300 1300 1300 6200 6200 2.2 23000 610 14000				

Inorganics - Nutrients (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Ammonia as N	mg/L	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrate as N	mg/L	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrate as NO3 by calculation	mg/L	0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Nitrite as N	mg/L	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite as NO2 by calculation	mg/L	0.020	<0.020	<0.020	<0.020	<0.020	<0.020
NOx as N	mg/L	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
TKN as N by calculation	mg/L	0.10	0.16	0.12	0.14	0.13	0.14
Organic Nitrogen by calc.	mg/L	0.10	0.15	0.12	0.14	0.12	0.14
Total Nitrogen	mg/L	0.10	0.16	0.12	0.15	0.13	0.15
Phosphate as P	mg/L	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
			20/12/2022				

Date Sampled			29/12/2023
Ammonia as N	mg/L	0.0050	<0.0050
Nitrate as N	mg/L	0.0050	<0.0050
Nitrate as NO3 by calculation	mg/L	0.020	<0.020
Nitrite as N	mg/L	0.0050	<0.0050
Nitrite as NO2 by calculation	mg/L	0.020	<0.020
NOx as N	mg/L	0.0050	<0.0050
TKN as N by calculation	mg/L	0.10	0.15
Organic Nitrogen by calc.	mg/L	0.10	0.15
Total Nitrogen	mg/L	0.10	0.15
Phosphate as P	mg/L	0.0050	<0.0050

Inorganics - Nutrients (Water) - Analysed By Envirolab Services Sydney

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Chlorophyll a	mg/m3	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
Date Sampled			29/12/2023				
Chlorophyll a	mg/m3	1.0	<1.0				

Microbiological Suite (Water)

Envirolab ID	Units	PQL	PEL1754-01	PEL1754-02	PEL1754-03	PEL1754-04	PEL1754-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			29/12/2023	29/12/2023	29/12/2023	29/12/2023	29/12/2023
Thermotolerant Coliforms	cfu/100mL	1	1	<1	<1	1	<1
Enterococci	cfu/100mL	1	1	<1	<1	<1	<1
E.coli	cfu/100mL	1	<1	<1	<1	1	<1
Envirolab ID	Units	PQL	PEL1754-06				
Your Reference			ST-06				
Date Sampled			29/12/2023				
Thermotolerant Coliforms	cfu/100mL	1	<1				
Enterococci	cfu/100mL	1	<1				
E.coli	cfu/100mL	1	<1				

Result Comments

Identifier	Description
[4]	PQL(s) has/have been raised due to suppression of the internal standard, which required the sample(s) to be diluted. This is likely due to the high level of salts in the sample.

Method Summary

Method ID	Methodology Summary
Calc	Calculation
Calc - TKN	TKN determined by calculation (Total Nitrogen - NOx).
INORG-006	Alkalinity - determined titrimetrically based on APHA latest edition 2320-B. Solids reported from a 1:5 water extract unless otherwise specified. Total Carbon Dioxide - determined by calculation in accordance with APHA latest edition,4500-CO2 D.
INORG-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at $180\pm10^{\circ}$ C. NOTE: Where the EC of the sample is < 100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation: TDS = EC*0.6
INORG-019	Suspended Solids - determined gravimetrically by filtration of the sample. The solids are dried at $104\pm5^{\circ}C$
INORG-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within $+/-15\%$ i.e. total anions = total cations $+/-15\%$.
INORG-055	Nitrate/Nitrite/NOx/TKN - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils/solids are analysed following a water extraction.
INORG-057	Ammonia - determined colourimetrically. Water samples are filtered on receipt prior to analysis. Soils and OHS media are analysed following a water extraction. Alternatively, Ammonia can be extracted from soil using 1M KCI.
INORG-060	Phosphate - determined colourimetrically using APHA latest edition 4500 P E. Water samples are filtered on receipt prior to analysis. Soils are analysed from a water extract.
INORG-081	Anions determined by Ion Chromatography. Waters samples are filtered on receipt prior to analysis. Solids are analysed from a water extract. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
INORG-127	Total Nitrogen by high temperature catalytic combustion with chemiluminescence detection. Organic Carbon forms (inorganic, organic, total) determined using a TOC/NDIR analyser via combustion. Dissolved forms require filtering prior to determination.
METALS-020	Determination of various metals by ICP-OES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
METALS-022	Determination of various metals by ICP-MS. Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
MICRO-001B	E. coli/Thermotolerant coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.5-latest edition). Recommended maximums based on NHMRC Australian Drinking Water Guidelines. Please note that results for this test derived from counts outside of the range 10-100 are considered approximate as per AS4276.1.
MICRO-001DE	Enterococci: Microbial Water Analysis - in accordance with MICRO-001 (AS 4276.9: latest edition). Please note that results for this test derived from counts outside of the range 10-100 are concidered approximate as per AS 4276.1.
ORG-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
ORG-023_F1_TOT	Determination of volatile organic compounds (VOCs) by P&T-GC-MS. Water samples are analysed directly by purge and trap GC-MS. Solids are extracted with Methanol, diluted and analysed by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Data Quality Assessment Summary PEL1754

Client Details

Client	Rottnest Island Authority
Your Reference	South Thomson Barge Landing - Baseline Water Quality Monitoring
Date Issued	09/01/2024

Recommended Holding Time Compliance

Recommended holding time exceedances exist - See detailed list below

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	No	LCS Outliers Exist - See detailed list below
Duplicates	No	Duplicate Outliers Exist - See detailed list below
Matrix Spike	No	Matrix Spike Outliers Exist - See detailed list below
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	No	QC Frequency Outliers Exist - See detailed list below

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary PEL1754

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
vTRH&MBTEXN Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
sTRH Water	1-6	29/12/2023	02/01/2024	03/01/2024	Yes
Total Phosphorus Water	1	29/12/2023	02/01/2024	02/01/2024	Yes
	2-6	29/12/2023	02/01/2024	04/01/2024	Yes
Dissolved Metals (LL) Water	1-6	29/12/2023	02/01/2024	03/01/2024	Yes
Dissolved Metals (LL)-Hg Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
TDS Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
TSS Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
Alkalinity Suite Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
Chloride Water	1-6	29/12/2023	02/01/2024	05/01/2024	Yes
Dissolved Cations Water	1-6	29/12/2023	02/01/2024	03/01/2024	Yes
Ion Balance Water	1-6	29/12/2023	03/01/2024	08/01/2024	Yes
Sulfate Water	1-6	29/12/2023	02/01/2024	05/01/2024	Yes
Chlorophyll a Water	1-6	29/12/2023	05/01/2024	08/01/2024	No
Nitrogen - Ammonia Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
Nitrogen - Nitrate Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
Nitrogen - Nitrite Water	1-6	29/12/2023	02/01/2024	02/01/2024	No
Nitrogen - NOx Water	1-6	29/12/2023	02/01/2024	02/01/2024	Yes
Nitrogen - Total N Water	1-6	29/12/2023	04/01/2024	01/08/2024	Yes
Phosphate as P Water	1-6	29/12/2023	02/01/2024	02/01/2024	No
TKN as N calc Water	1-6	29/12/2023	03/01/2024	09/01/2024	Yes
E. coli & T.T.coli Water	1-6	29/12/2023	29/12/2023	29/12/2023	Yes
Enterococci Water	1-6	29/12/2023	29/12/2023	29/12/2023	Yes

Outliers: Laboratory Control Samples

ORG-020 | Semi-volatile TRH (Water) | Batch BFA0023

Sample ID	Analyte	% Limits	% Recovery
BFA0023-BS1	o-Terphenyl	60 - 140	##[3]

Data Quality Assessment Summary PEL1754

Outliers: Duplicates

INORG-019 | Inorganics - Physical Parameters (Water) | Batch BFA0064

Sample ID	Duplicate ID	Analyte	% Limits	RPD
BFA0064-DUP1#	DUP1	Total Suspended Solids	20.00	200[5]
BFA0064-DUP2#	DUP2	Total Suspended Solids	20.00	200[5]

METALS-022 | Dissolved Low Level Metals (Water) | Batch BFA0019

Sample ID	Duplicate ID	Analyte	% Limits	RPD
BFA0019-DUP1#	DUP1	Selenium	20.00	92.1[6]

Outliers: Matrix Spike

METALS-020 | Inorganics - Ionic Balance and Indexes (Water) | Batch BFA0020

Sample ID	Analyte	% Limits	% Recovery
BFA0020-MS1#	Sodium	70 - 130	##[1]

METALS-022 | Dissolved Low Level Metals (Water) | Batch BFA0019

Sample ID	Analyte	% Limits	% Recovery
BFA0019-MS1#	Barium	70 - 130	##[2]
BFA0019-MS1#	Boron	70 - 130	##[1]
BFA0019-MS1#	Manganese	70 - 130	##[1]
BFA0019-MS1#	Vanadium	70 - 130	##[2]

ORG-020 | Semi-volatile TRH (Water) | Batch BFA0023

Sample ID	Analyte	% Limits	% Recovery
BFA0023-MS1#	o-Terphenyl	60 - 140	##[3]

Outliers: QC Frequency

INORG-119 | Inorganics - Nutrients (Water) | Batch BFA0344

Analysis	QC Type	Expected	Reported
Chlorophyll a	Duplicate	1	0

ORG-023_F1_TOT | Volatile TRH and BTEX (Water) | Batch BFA0072

Analysis	QC Type	Expected	Reported
vTRH&MBTEXN	Duplicate	2	0
	Matrix Spike	1	0

ORG-023_F1_TOT | Volatile TRH and BTEX (Water) | Batch BFA0072

				LCS %
Analyte	Units	PQL	Blank	
TRH C6-C9	μg/L	10	<10	92.3
TRH C6-C10	µg/L	10	<10	90.0
TRH C6-C10 less BTEX (F1)	µg/L	10	<10	[NA]
Methyl tert butyl ether (MTBE)	µg/L	1.0	<1.0	[NA]
Benzene	µg/L	1.0	<1.0	102
Toluene	µg/L	1.0	<1.0	84.2
Ethylbenzene	µg/L	1.0	<1.0	88.6
meta+para Xylene	µg/L	2.0	<2.0	93.1
ortho-Xylene	µg/L	1.0	<1.0	88.9
Total Xylene	µg/L	3.0	<3.0	[NA]
Naphthalene (value used in F2 calc)	µg/L	1.0	<1.0	[NA]
Surrogate Dibromofluoromethane	%		93.1	90.0
Surrogate Toluene-D8	%		98.5	92.2
Surrogate 4-Bromofluorobenzene	%		98.6	101

ORG-020 | Semi-volatile TRH (Water) | Batch BFA0023

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BFA0023-DUP1#	PEL1754-01		BFA0023-MS1#
				Samp QC RPD %	Samp QC RPD %		
TRH C10-C14	µg/L	50	<50	<50 <50 [NA]	<50 <50 [NA]	90.4	89.7
TRH C15-C28	µg/L	100	<100	<100 <100 [NA] [6]	<100 <100 [NA]	98.3	94.5
TRH C29-C36	µg/L	100	<100	<100 <100 [NA]	<100 <100 [NA]	83.7	78.4
TRH >C10-C16	µg/L	50	<50	<50 <50 [NA]	<50 <50 [NA]	94.1	92.8
TRH >C16-C34 (F3)	µg/L	100	<100	<100 <100 [NA] [6]	<100 <100 [NA]	97.1	93.0
TRH >C34-C40 (F4)	µg/L	100	<100	<100 <100 [NA]	<100 <100 [NA]	82.1	78.6
Surrogate o-Terphenyl	%		82.8	82.7 73.6	70.8 79.2	## [3]	##[3]

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-020 | Acid Extractable Metals (Water) | Batch BFA0022

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BFA0022-DUP1#	PEL1754-01		BFA0022-MS1#
				Samp QC RPD %	Samp QC RPD %		
Phosphorus	mg/L	0.050	<0.050	22.5 22.7 1.17	<0.10 <0.10 [NA]	102	93.0

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-022 | Dissolved Low Level Metals (Water) | Batch BFA0019

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BFA0019-DUP1#	PEL1754-01		BFA0019-MS1#
				Samp QC RPD %	Samp QC RPD %		
Arsenic	µg/L	1.0	<1.0	<2.0 <2.0 [NA]	1.55 1.77 13.3	104	128
Barium	µg/L	1.0	<1.0	185 190 2.29	5.52 5.78 4.60	93.3	##[2]
Beryllium	µg/L	0.50	<0.50	<1.0 <1.0 [NA]	<0.50 <0.50 [NA]	86.0	112
Boron	µg/L	20	<20	3030 3040 0.540	4620 4400 4.72	101	##[1]
Cadmium	µg/L	0.10	<0.10	<0.20 <0.20 [NA]	<0.10 <0.10 [NA]	101	120
Chromium	µg/L	1.0	<1.0	<2.0 <2.0 [NA]	<1.0 <1.0 [NA]	103	123
Cobalt	µg/L	1.0	<1.0	4.78 5.06 5.69	<1.0 <1.0 [NA]	104	119
Copper	µg/L	1.0	<1.0	<2.0 <2.0 [NA]	<1.0 <1.0 [NA]	103	111
Lead	µg/L	1.0	<1.0	3.02 2.60 14.9	<1.0 <1.0 [NA]	94.3	110
Manganese	µg/L	1.0	<1.0	4840 4960 2.43	<1.0 <1.0 [NA]	101	##[1]
Nickel	µg/L	1.0	<1.0	28.0 33.6 18.3	<1.0 <1.0 [NA]	103	115
Selenium	µg/L	1.0	<1.0	6.82 2.52 92.1 [6]	<1.0 <1.0 [NA]	98.4	120
Vanadium	µg/L	1.0	<1.0	<2.0 <2.0 [NA]	2.16 2.22 2.74	103	##[2]
Zinc	µg/L	1.0	<1.0	<2.0 <2.0 [NA]	<1.0 <1.0 [NA]	103	111

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-021 | Dissolved Low Level Metals (Water) | Batch BFA0021

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BFA0021-DUP1#		BFA0021-MS1#
-		-		Samp QC RPD %		
Mercury	µg/L	0.050	<0.050	<0.050 <0.050 [NA]	90.0	80.4

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-018 | Inorganics - Physical Parameters (Water) | Batch BFA0063

Analyte	Units	PQL	Blank	DUP1 BFA0063-DUP1# Samp QC RPD %	DUP2 BFA0063-DUP2# Samp QC RPD %	LCS %
Total Dissolved Solids	mg/L	5.0	<5.0	142000 145000 2.28	2350 2380 1.35	111

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-019 | Inorganics - Physical Parameters (Water) | Batch BFA0064

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BFA0064-DUP1#	BFA0064-DUP2#	
-		-		Samp QC RPD %	Samp QC RPD %	
Total Suspended Solids	mg/L	5.0	<5.0	## ## [NA] [5]	## ## [NA] [5]	112

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-020 | Inorganics - Ionic Balance and Indexes (Water) | Batch BFA0020

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BFA0020-DUP1# Samp QC RPD %	BFA0020-DUP2# Samp QC RPD %		BFA0020-MS1#
Calcium	mg/L	0.50	<0.50	834 827 0.832	436 438 0.431	90.4	89.6
Magnesium	mg/L	0.50	<0.50	456 455 0.228	1480 1490 0.394	93.9	96.3
Potassium	mg/L	0.50	<0.50	112 109 2.67	116 117 0.793	91.4	90.4
Sodium	mg/L	0.50	<0.50	2950 2930 0.714	10500 10600 1.36	95.1	##[1]
Hardness as CaCO3	mg/L	3.0	<3.0	3960 3940 0.545	7190 7220 0.400	[NA]	[NA]

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-006 | Inorganics - Ionic Balance and Indexes (Water) | Batch BFA0027

				DUP1	DUP2	LCS %	
Analyte	Units	PQL	Blank	BFA0027-DUP1#	BFA0027-DUP2#		
				Samp QC RPD %	Samp QC RPD %		
Bicarbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	258 260 0.733	336 346 2.96	[NA]	
Carbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0 <5.0 [NA]	<5.0 <5.0 [NA]	[NA]	
Hydroxide OH- as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0 <5.0 [NA]	<5.0 <5.0 [NA]	[NA]	
Total Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	258 260 0.733	336 346 2.96	[NA]	
						LCS %	
Analyte	Units	PQL	Blank				
Total Alkalinity as CaCO3	mg/L as CaCO3	5				104	

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-081 | Inorganics - Ionic Balance and Indexes (Water) | Batch BFA0081

Analyte	Units	PQL	Blank	DUP1 BFA0081-DUP1# Samp QC RPD %	DUP2 PEL1754-01 Samp QC RPD %	LCS %	Spike % BFA0081-MS1#
Chloride	mg/L	1.0	<1.0	<1.0 <1.0 [NA]	19200 19400 1.05	89.1	87.2
Sulfate	mg/L	1.0	<1.0	<1.0 <1.0 [NA]	2600 2640 1.44	91.7	97.5

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-057 | Inorganics - Nutrients (Water) | Batch BFA0031

Analyte	Units	PQL	Blank	DUP1 PEL1754-01 Samp QC RPD %	LCS %	Spike % PEL1754-02
Ammonia as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	94.6	107
Nitrate as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA] [6]	99.9	110
Nitrate as NO3 by calculation	mg/L	0.020	<0.020		[NA]	[NA]
Nitrite as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	[NA]	[NA]
Nitrite as NO2 by calculation	mg/L	0.020	<0.020		[NA]	[NA]
NOx as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA] [6]	99.9	110
Phosphate as P	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA] [6]	112	126
Analyte	Units	PQL	Blank		LCS %	Spike % PEL1754-02
Nitrite as N	mg/L	0.005			99.9	118

INORG-127 | Inorganics - Nutrients (Water) | Batch BFA0225

Analyte	Units	PQL	Blank	DUP1 PEL1754-01 Samp QC RPD %	DUP2 BFA0225-DUP2# Samp QC RPD %	LCS %	Spike % PEL1754-02
Total Nitrogen	mg/L	0.10	<0.10	0.160 0.138 14.9	24.3 23.9 1.79	120	126

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-119 | Inorganics - Nutrients (Water) | Batch BFA0344

Analyte	Units	PQL	Blank	LCS %
Chlorophyll a	mg/m3	1.0	<1.0	101

MICRO-001B | Microbiological Suite (Water) | Batch BEL3276

Units	PQL	Blank	DUP1 BEL3276-DUP1# Samp QC RPD %	DUP2 BEL3276-DUP2# Samp QC RPD %	LCS %	
cfu/100mL	1	<1	<1 <1 [NA]	<1 <1 [NA]	[NA]	
cfu/100mL	1	<1	<1 <1 [NA]	<1 <1 [NA]	[NA]	
Units	PQL	Blank	DUP3 BEL3276-DUP3# Samp QC RPD %	DUP4 BEL3276-DUP4# Samp QC RPD %	LCS %	
cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]	
cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]	
	Units cfu/100mL cfu/100mL Units cfu/100mL cfu/100mL	Units PQL cfu/100mL 1 cfu/100mL 1 Units PQL cfu/100mL 1 cfu/100mL 1 cfu/100mL 1	Units PQL Blank cfu/100mL 1 <1	Units PQL Blank DUP1 BEL3276-DUP1# Samp QC RPD % cfu/100mL 1 <1	Units PQL Blank DUP1 BEL3276-DUP1# Samp QC RPD % DUP2 BEL3276-DUP2# Samp QC RPD % cfu/100mL 1 <1	Units PQL Blank BEL3276-DUP1# Samp QC RPD % BEL3276-DUP2# Samp QC RPD % cfu/100mL 1 <1

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

MICRO-001DE | Microbiological Suite (Water) | Batch BEL3277

Analyte	Units	PQL	Blank	LCS %
Enterococci	cfu/100mL	1	<1	[NA]

QC Comments

Identifier	Description
[1]	Spike recovery is not applicable due to the relatively high analyte background in the sample (>3* spike level). However, the LCS recovery is within acceptance criteria.
[2]	Spike recovery is outside routine acceptance criteria (70-130%), this may be due to suspected non-homogeneity and/or matrix interference effects. However, an acceptable recovery was achieved for the LCS.
[3]	Surrogate recovery is outside routine acceptance criteria (60-140%) as a result of the high concentration of analyte(s) in the sample.
[5]	Note: There was insufficient sample to perform all QC according to our internal guidelines.
[6]	Duplicate %RPD may be flagged as an outlier to routine laboratory acceptance, however, where one or both results are <10*PQL, the RPD acceptance criteria increases exponentially.

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PFA1208

Client Details

Rottnest Island Authority
David Pond
PO Box 693, FREMANTLE, WA, 6959
South Thomson Barge Landing - Baseline Water Quality Monitoring
6 Water
24/01/2024
24/01/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

Date Results Requested by	01/02/2024	
Date of Issue	01/02/2024	
NATA Accreditation Number 2901. This	document shall not be reproduced except in full.	

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Authorisation Details

Results Approved By	Diego Bigolin, Supervisor, Inorganics
	Lien Tang, Assistant Operations Manager

Laboratory Manager

Michael Kubiak

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PFA1208-01	ST-01	Water	23/01/2024	24/01/2024
PFA1208-02	ST-02	Water	23/01/2024	24/01/2024
PFA1208-03	ST-03	Water	23/01/2024	24/01/2024
PFA1208-04	ST-04	Water	23/01/2024	24/01/2024
PFA1208-05	ST-05	Water	23/01/2024	24/01/2024
PFA1208-06	ST-06	Water	23/01/2024	24/01/2024

Sample Comments

General Comment

Insufficient volume for low level TSS - Testing routine level

Inorganics - Physical Parameters (Water)

Envirolab ID	Units	PQL	PFA1208-01	PFA1208-02	PFA1208-03	PFA1208-04	PFA1208-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			23/01/2024	23/01/2024	23/01/2024	23/01/2024	23/01/2024
Total Dissolved Solids	mg/L	5.0	41000	49000	41000	41000	41000
Total Suspended Solids	mg/L	5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Envirolab ID	Units	PQL	PFA1208-06				
Your Reference			ST-06				
Date Sampled			23/01/2024				
Total Dissolved Solids	mg/L	5.0	41000				
Total Suspended Solids	mg/L	5.0	<5.0				

Inorganics - Nutrients (Water) - Analysed By Envirolab Services Sydney

Envirolab ID	Units	PQL	PFA1208-01	PFA1208-02	PFA1208-03	PFA1208-04	PFA1208-05
Your Reference			ST-01	ST-02	ST-03	ST-04	ST-05
Date Sampled			23/01/2024	23/01/2024	23/01/2024	23/01/2024	23/01/2024
Chlorophyll a	mg/m3	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Envirolab ID	Units	PQL	PFA1208-06				
Your Reference			ST-06				
Date Sampled			23/01/2024				
Chlorophyll a	mg/m3	1.0	<1.0				

Method Summary

Method ID	Methodology Summary
INORG-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at $180\pm10^{\circ}$ C. NOTE: Where the EC of the sample is < 100μ S/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation: TDS = EC*0.6
INORG-019	Suspended Solids - determined gravimetrically by filtration of the sample. The solids are dried at 104±5°C
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Data Quality Assessment Summary PFA1208

Client Details

Client	Rottnest Island Authority
Your Reference	South Thomson Barge Landing - Baseline Water Quality Monitoring
Date Issued	01/02/2024

Recommended Holding Time Compliance

No recommended holding time exceedances

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	Yes	No Outliers
Matrix Spike	Yes	No Outliers
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	No	QC Frequency Outliers Exist - See detailed list below

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary PFA1208

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
TDS Water	1-6	23/01/2024	29/01/2024	29/01/2024	Yes
TSS Water	1-6	23/01/2024	29/01/2024	29/01/2024	Yes
Chlorophyll a-Frozen Water	1-6	23/01/2024	23/01/2024	01/02/2024	Yes

Outliers: QC Frequency

INORG-119 | Inorganics - Nutrients (Water) | Batch BFA2461

Analysis	QC Туре	Expected	Reported
Chlorophyll a-Frozen	Duplicate	1	0

Quality Control PFA1208

INORG-018 | Inorganics - Physical Parameters (Water) | Batch BFA2535

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	PFA1208-06	BFA2535-DUP2#	
-		-		Samp QC RPD %	Samp QC RPD %	
Total Dissolved Solids	mg/L	5.0	<5.0	40800 40600 0.466	380 380 0.00	113

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-019 | Inorganics - Physical Parameters (Water) | Batch BFA2536

Augh da		DOI	Disala	DUP1		LCS %
Analyte	Units	PQL	ыапк	Samp QC RPD %	Samp QC RPD %	
Total Suspended Solids	mg/L	5.0	<5.0	<5.0 <5.0 [NA] [1]	<5.0 <5.0 [NA] [1]	102

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-119 | Inorganics - Nutrients (Water) | Batch BFA2461

Analyte	Units	PQL	Blank	LCS %
Chlorophyll a	mg/m3	1.0	<1.0	80.4

QC Comments

Identifier	Description
[1]	Note: There was insufficient sample to perform all QC according to our internal guidelines.

Date	Site	Т	DO	Cond	TDS	SAL	рН	ORP	Turbidity	Secchi depth
		°C	mg/L	mS/cm	g/L	ppt	-	mV	NTU	m
20/11/2023	ST-01	25.12	7.2	56.176	36.51	37.32	8	67.6	0	-
10.00am	ST-02	25.49	7	56.272	36.58	37.38	7.01	91.5	3.5	-
	Samples collected:	TSS								
	Weather:									
		Sunny, ligh	t to moderat	e SSE winds	s at 15km/hr	tide low at	0.20m. sliat	ntly choppy s	seas from the	e south-east.
		swell 1.0m.	Water quali	ty reasonab	le. Moderate	number of	boats moore	ed around A	rmy Groyne.	
23/11/2023	ST-01			•	no reading	s collected				-
10.00am	Samples collected:	TSS, turbid	ity							
	Weather:	Partly cloud	ly, strong E	winds at 25k	km/hr, tide lo	w at 0.24m,	choppy sea	is from the e	east, swell 1.	5m. Water
		quality poor	fair. Few b	oats moored	around Arm	ny Groyne.				
29/12/2023	ST-01	25.3	7.2	55.958	36.37	37.15	8.08	44.8	0	-
09.30am	ST-02	25.4	7.3	55.775	36.25	37.01	8.16	54.3	0	-
	ST-03	25.6	7.3	55.65	36.17	36.91	8.22	56.6	0	-
	ST-04	25.1	7.1	56.151	36.5	37.3	7.64	52.8	0	-
	ST-05	25.7	7.3	55.579	36.13	36.86	8.26	54.3	0	-
	ST-06	25.8	7.5	55.458	36.05	36.76	8.33	60.5	0	-
	Samples collected:	Suite A.								
	Weather:	Partly cloud	ly, strong E	winds at 22k	km/hr, tide lo	w at 0.16m,	choppy sea	is from the e	ast, swell 1.	5m. Water
		quality fair.	Many boats	moored aro	und Army G	iroyne.				
23/01/2024	ST-01	24	8.3	57.22	37.2	38.14	8.15	159	0	2.4 (bottom)
13.00pm	ST-02	23.8	8.2	57.16	37.16	38.11	8.11	154	0	3.8 (bottom)
	ST-03	23.96	8.6	57.22	37.19	38.13	8.16	156	0	3.2 (bottom)
	ST-04	24.01	8.7	57.26	37.2	38.12	8.2	165	0	1.9 (bottom)
	ST-05	24.39	8.9	57.29	37.24	38.19	8.19	162	0	2.8 (bottom)
	ST-06	23.64	8.5	57.13	37.13	38.06	8.23	181	0	3.0 (bottom)
	Samples collected:	Suite B								
	Weather:	Sunny. light to moderate SW winds at 15km/hr. tide mid at 0.80m, slightly choppy seas from the south, swe								
		1.0m. Wate	r quality goo	od. Moderate	e number of	boats moore	ed around A	rmy Groyne		

Water Quality Analytical Results - December 2023

						Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX
						TRH C6-C9	TRH C6-C10	TRH C6-C10 less BTFX (F1)	Methyl tert butyl ether (MTBF)	Benzene	Toluene	Ethylbenzene	meta+para Xvlene	ortho-Xylene
RotUnits						µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
PQL						10	10	10	1.0	1.0	1.0	1.0	2.0	1.0
Matrix						Water	Water	Water	Water	Water	Water	Water	Water	Water
Method						ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT
Trigger va	lues for Marine Wa	ter 99%				-	-	-	-	-	-	-	-	-
Groundwa	ater Investigation le	vel for Marine W	/ater			-	-	-	-	-	-	-	-	-
ANZECC	Trigger value for sl	ghtly disturbed	ecosystem	s (SW Australia	i - Marine -									
Inshore)						-	-	-	-	-	-	-	-	-
Referenc	e Sample	Sample No.	Replicat	Date	Type of Sample	-	-	-	-	-	-	-	-	-
PEL1754	ST-01	01	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
PEL1754	ST-02	02	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
PEL1754	ST-03	03	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
PEL1754	ST-04	04	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
PEL1754	ST-05	05	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
PEL1754	ST-06	06	0	29/12/2023	Water	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0
BFA0019	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0022	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0023	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0031	ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0081	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0225	ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-

					Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Volatile TRH and BTEX	Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH
	Jues for Marine Water 99% ter Investigation level for Marine Water rigger value for slightly disturbed ecosystems (SW Australia - Sample Sample No. Replicat Date 1 ST-01 01 0 29/12/2023 1 ST-02 02 0 29/12/2023 1 ST-03 03 0 29/12/2023 1 ST-04 04 0 29/12/2023 1 29/12/2023 ST-05 05 0 29/12/2023 1 29/12/2023 1 ST-01 DUP2 1 29/12/2023 1 29/12/2023 1				Total Xylene	Naphthalene (value used in F2 calc)	Dibromofluoromethane	Toluene-D8	4-Bromofluorobenzene	TRH C10-C14	TRH C15-C28	TRH C29-C36	Total +ve TRH C10-C36	TRH >C10-C16
RptUnits	Sample Sample No. Replicat Date Typ T-01 01 0 29/12/2023 Typ T-02 02 0 29/12/2023 Top T-03 03 0 29/12/2023 Top T-04 04 0 29/12/2023 Top T-05 05 0 29/12/2023 Top T-04 04 0 29/12/2023 Top T-05 05 0 29/12/2023 Top T-01 DUP2 1 29/12/2023 Top T-01 DUP1 1 29/12/2023 Top				µg/L	μg/L	%	%	%	µg/L	µg/L	µg/L	µg/L	µg/L
PQL					3.0	1.0	-	-	-	50	100	100	50	50
Matrix					Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Method					ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-023_F1_TOT	ORG-020	ORG-020	ORG-020	ORG-020	ORG-020
Trigger values for Marine V	gger values for Marine Water 99% oundwater Investigation level for Marine Water				-	-	-	-	-	-	-	-	-	-
Groundwater Investigation	level for Marine Wa	ater			-	-	-	-	-	-	-	-	-	-
ANZECC Trigger value for	slightly disturbed e	cosystems	s (SW Australia	i - Marine -										
Inshore)					-	-	-	-	-	-	-	-	-	-
Reference Sample	Sample No.	Replicat	Date	Type of Sample	-	-	-	-	-	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	<3.0	<1.0	96.7	95.8	105	<50	<100	<100	<50	<50
PEL1754 ST-02	02	0	29/12/2023	Water	<3.0	<1.0	94.5	94.6	103	<50	<100	<100	<50	<50
PEL1754 ST-03	03	0	29/12/2023	Water	<3.0	<1.0	95.8	94.3	104	<50	<100	<100	<50	<50
PEL1754 ST-04	04	0	29/12/2023	Water	<3.0	<1.0	94.9	96.7	105	<50	<100	<100	<50	<50
PEL1754 ST-05	05	0	29/12/2023	Water	<3.0	<1.0	97.6	96.4	100	<50	<100	<100	<50	<50
PEL1754 ST-06	06	0	29/12/2023	Water	<3.0	<1.0	97.8	93.6	105	<50	<100	<100	<50	<50
BFA0019 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	<50	<100	<100	-	<50
BFA0031 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-	-

Water Quality Analytical Results - December 2023

			Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH	Semi-volatile TRH	Acid Extractable Metals	Dissolved Low Level Metals	Dissolved Low Level Metals	Dissolved Low Level Metals
			TRH >C10-C16 less Naphthalene F2	TRH >C16-C34 (F3)	TRH >C34-C40 (F4)	Total +ve TRH >C10-C40	o-Terphenyl	Phosphorus	Arsenic	Barium	Beryllium
RptUnits			µg/L	µg/L	µg/L	µg/L	%	mg/L	µg/L	µg/L	µg/L
PQL			50	100	100	50	-	0.050	1.0	1.0	0.50
Matrix			Water	Water	Water	Water	Water	Water	Water	Water	Water
Method			ORG-020	ORG-020	ORG-020	ORG-020	ORG-020	METALS-020	METALS-022	METALS-022	METALS-022
Trigger values for Marine Water 99%	er values for Marine Water 99% ndwater Investigation level for Marine Water				-	-	-	-	-	-	-
Groundwater Investigation level for Marine Water	oundwater Investigation level for Marine Water				-	-	-	-	-	-	-
ANZECC Trigger value for slightly disturbed ecosyste	ems (SW Austra	lia - Marine -									
Inshore)			-	-	-	-	-	0.02	-	-	-
Reference Sample Sample No. Replica	at Date	Type of Sample		-	-	-	-	-	-	-	-
PEL1754 ST-01 01 0	29/12/202	8 Water	<50	<100	<100	<50	70.8	<0.10	1.6	5.5	<0.50
PEL1754 ST-02 02 0	29/12/202	8 Water	<50	<100	<100	<50	69.9	<0.25	1.6	5.7	<0.50
PEL1754 ST-03 03 0	29/12/202	8 Water	<50	<100	<100	<50	76.8	<0.25	1.8	5.4	<0.50
PEL1754 ST-04 04 0	29/12/202	8 Water	<50	<100	<100	<50	73.3	< 0.25	2.0	5.9	<0.50
PEL1754 ST-05 05 0	29/12/202	8 Water	<50	<100	<100	<50	76.4	<0.25	1.8	6.0	<0.50
PEL1754 ST-06 06 0	29/12/202	8 Water	<50	<100	<100	<50	87.6	<0.25	2.0	5.8	<0.50
BFA0019 ST-01 DUP2 1	29/12/202	8 Water	-	-	-	-	-	-	1.77	5.78	<0.50
BFA0022 ST-01 DUP2 1	29/12/202	8 Water	-	-	-	-	-	<0.10	-	-	-
BFA0023 ST-01 DUP2 1	29/12/202	8 Water	-	<100	<100	-	79.2	-	-	-	-
BFA0031 ST-01 DUP1 1	31 ST-01 DUP1 1 29/12/2023 Water		-	-	-	-	-	-	-	-	-
BFA0081 ST-01 DUP2 1	ST-01 DUP2 1 29/12/2023 Water		-	-	-	-	-	-	-	-	-
BFA0225 ST-01 DUP1 1	29/12/202	8 Water	-	-	-	_	-	-	-	-	-

						Dissolved Low Level Metals							
						Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury
RptUnits						µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L
PQL						20	0.10	1.0	1.0	1.0	1.0	1.0	0.050
Matrix						Water							
Method						METALS-022	METALS-021						
Trigger va	lues for Marine Wate	er 99%				-	-	7.84#	-	-	-	-	-
Groundwa	ater Investigation leve	el for Marine W	Vater			-	-	31.8#	-	-	-	-	-
ANZECC	Trigger value for slig	htly disturbed	ecosystem	s (SW Australia	a - Marine -								
Inshore)						-	-	-	-	-	-	-	-
Referenc	e Sample	Sample No.	Replicat	Date	Type of Samp	e -	-	-	-	-	-	-	-
PEL1754	ST-01	01	0	29/12/2023	Water	4600	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.050
PEL1754	ST-02	02	0	29/12/2023	Water	4400	<0.10	9.6	<1.0	<1.0	<1.0	<1.0	<0.050
PEL1754	ST-03	03	0	29/12/2023	Water	4400	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.050
PEL1754	ST-04	04	0	29/12/2023	Water	4400	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.050
PEL1754	ST-05	05	0	29/12/2023	Water	4400	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.050
PEL1754	ST-06	06	0	29/12/2023	Water	4300	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.050
BFA0019	ST-01	DUP2	1	29/12/2023	Water	4400	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	-
BFA0022	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0023	ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0031	ST-01	DUP1	1	29/12/2023	Water	-	-	-		-			-
BFA0081	ST-01	DUP2	1	29/12/2023	Water	-	-	-		-			
BFA0225	ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-

					Dissolved Low Level Metals	Inorganics - Physical Parameters	Inorganics - Physical Parameters	Inorganics - Ionic Balance and Indexes			
					NP -1 -1	Calanian		7'	Table Disastruct Calida		Disaste analy Alleriteite as Ca CO2
					NICKEI	Selenium	vanadium	ZINC	Total Dissolved Solids	Total Suspended Solids	Bicarbonate Alkalinity as CaCO3
RptUnits					µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	mg/L as CaCO3
PQL					1.0	1.0	1.0	1.0	5.0	5.0	5.0
Matrix					Water	Water	Water	Water	Water	Water	Water
Method					METALS-022	METALS-022	METALS-022	METALS-022	INORG-018	INORG-019	INORG-006
Trigger values for Marine Wate	er 99%				-	-	50	7	-	-	-
Groundwater Investigation leve	el for Marine W	/ater			-	-	100	15	-	-	-
ANZECC Trigger value for slig	htly disturbed	ecosystems	s (SW Australia	a - Marine -							
Inshore)					-	-	-	-	-	-	-
Reference Sample	Sample No.	Replicat	Date	Type of Sample	-	-	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	<1.0	<1.0	2.2	<1.0	40000	<5.0	130
PEL1754 ST-02	02	0	29/12/2023	Water	<1.0	<1.0	2.3	620	41000	<5.0	130
PEL1754 ST-03	03	0	29/12/2023	Water	<1.0	<1.0	2.2	<1.0	41000	<5.0	130
PEL1754 ST-04	04	0	29/12/2023	Water	<1.0	<1.0	2.1	11	41000	<5.0	130
PEL1754 ST-05	05	0	29/12/2023	Water	<1.0	<1.0	2.1	<1.0	41000	<5.0	130
PEL1754 ST-06	06	0	29/12/2023	Water	<1.0	<1.0	2.0	<1.0	40000	<5.0	130
BFA0019 ST-01	DUP2	1	29/12/2023	Water	<1.0	<1.0	2.22	<1.0	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-
BFA0031 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-

					Inorganics - Ionic Balance and Indexes					
					Carbonate Alkalinity as CaCO3	Hydroxide OH- as CaCO3	Total Alkalinity as CaCO3	Chloride	Sulfate	Calcium
RptUnits					mg/L as CaCO3	mg/L as CaCO3	mg/L as CaCO3	mg/L	mg/L	mg/L
PQL					5.0	5.0	5.0	1.0	1.0	0.50
Matrix					Water	Water	Water	Water	Water	Water
Method					INORG-006	INORG-006	INORG-006	INORG-081	INORG-081	METALS-020
Trigger values for Marine Water	r 99%				-	-	-	-	-	-
Groundwater Investigation leve	el for Marine W	Vater			-	-	-	-	-	-
ANZECC Trigger value for sligh	ntly disturbed	ecosystems	s (SW Australia	a - Marine -						
Inshore)					-	-	-	-	-	-
Reference Sample	Sample No.	Replicat	Date	Type of Sampl	e -	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	<5.0	<5.0	130	19000	2600	390
PEL1754 ST-02	02	0	29/12/2023	Water	<5.0	<5.0	130	19000	2800	400
PEL1754 ST-03	03	0	29/12/2023	Water	<5.0	<5.0	130	19000	2800	400
PEL1754 ST-04	04	0	29/12/2023	Water	<5.0	<5.0	130	20000	2800	400
PEL1754 ST-05	05	0	29/12/2023	Water	<5.0	<5.0	130	19000	2800	400
PEL1754 ST-06	06	0	29/12/2023	Water	<5.0	<5.0	130	20000	2900	400
BFA0019 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0031 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	19400	2640	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-

					Inorganics - Ionic Balance and Indexes					
	Sample No. Replicat Date Type of the second sec			Magnesium	Potassium	Sodium	Hardness as CaCO3	Ionic Balance	Total Anions	
RptUnits					mg/L	mg/L	mg/L	mg/L	%	mg/L
PQL					0.50	0.50	0.50	3.0	-	-
Matrix					Water	Water	Water	Water	Water	Water
Method					METALS-020	METALS-020	METALS-020	METALS-020	INORG-040	Calc
Trigger values for Marine Wate	er 99%				-	-	-	-	-	-
Groundwater Investigation leve	el for Marine W	Vater			-	-	-	-	-	-
ANZECC Trigger value for sligh	htly disturbed	ecosystems	s (SW Australia	a - Marine -						
Inshore)					-	-	-	-	-	-
Reference Sample	Sample No.	Replicat	Date	Type of Sample	e -	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	1200	370	11000	6000	2.1	22000
PEL1754 ST-02	02	0	29/12/2023	Water	1200	380	11000	6100	1.9	22000
PEL1754 ST-03	03	0	29/12/2023	Water	1300	380	12000	6200	2.3	22000
PEL1754 ST-04	04	0	29/12/2023	Water	1200	380	12000	6100	1.6	22000
PEL1754 ST-05	05	0	29/12/2023	Water	1200	390	12000	6100	2.3	22000
PEL1754 ST-06	06	0	29/12/2023	Water	1300	390	12000	6200	2.2	23000
BFA0019 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0031 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-

					Inorganics - Ionic Balance and Indexes	Inorganics - Ionic Balance and Indexes	Inorganics - Ionic Balance and Indexes	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients
	alues for Marine Water 99% ater Investigation level for Marine Water Trigger value for slightly disturbed ecosystems (SW Australia - Ma e Sample Sample No. Replicat Date Typ ST-01 01 0 29/12/2023											
					Anions as meq	Total Cations	Cations as meq	Ammonia as N	Nitrate as N	Nitrate as NO3 by calculation	Nitrite as N	Nitrite as NO2 by calculation
RptUnits					meq/L	mg/L	meq/L	mg/L	mg/L	mg/L	mg/L	mg/L
PQL					-	-	-	0.0050	0.0050	0.020	0.0050	0.020
Matrix					Water	Water	Water	Water	Water	Water	Water	Water
Method					Calc	Calc	Calc	INORG-057	INORG-055	INORG-055	INORG-055	INORG-055
Trigger values for Marine	Water 99%				-	-	-	-	-	-	-	-
Groundwater Investigatio	n level for Marine	Water			-	-	-	-	-	-	-	-
ANZECC Trigger value for	slightly disturbe	ed ecosystem	s (SW Australi	a - Marine -								
Inshore)					-	-	-	-	-	-	-	-
Reference Sample	Sample N	lo. Replicat	Date	Type of Sample	-	-	-	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	600	13000	620	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
PEL1754 ST-02	02	0	29/12/2023	Water	610	13000	630	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
PEL1754 ST-03	03	0	29/12/2023	Water	610	14000	640	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
PEL1754 ST-04	04	0	29/12/2023	Water	610	14000	630	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
PEL1754 ST-05	05	0	29/12/2023	Water	610	14000	640	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
PEL1754 ST-06	06	0	29/12/2023	Water	610	14000	640	< 0.0050	< 0.0050	<0.020	< 0.0050	<0.020
BFA0019 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0031 ST-01	DUP1	1	29/12/2023	Water	-	-	-	< 0.0050	< 0.0050	-	< 0.0050	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	-	-	-	-	-

Water Quality Analytical Results - December 2023

					Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Inorganics - Nutrients	Microbiological Suite	Microbiological Suite	Microbiological Suite
					NOx as N	TKN as N by calculation	Organic Nitrogen by calc.	Total Nitrogen	Phosphate as P	Chlorophyll a	Enterococci	Thermotolerant Coliforms	E.coli
RptUnits					mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3	cfu/100mL	cfu/100mL	cfu/100mL
PQL					0.0050	0.10	0.10	0.10	0.0050	1.0	1	1	1
Matrix					Water	Water	Water	Water	Water	Water	Water	Water	Water
Method					INORG-055	Calc - TKN	Calc	INORG-127	INORG-060	INORG-119	MICRO-001DE	MICRO-001B	MICRO-001B
Trigger values for Marine Water	° 99%				-	-	-	-	-	-	-	-	-
Groundwater Investigation level	I for Marine W	/ater			-	-	-	-	-	-	-	-	-
ANZECC Trigger value for slight	tly disturbed of	ecosystems	(SW Australia	- Marine -									
Inshore)					-	-	-	0.23	-	0.7	-	-	-
Reference Sample	Sample No.	Replicat	Date	Type of Sample	-	-	-	-	-	-	-	-	-
PEL1754 ST-01	01	0	29/12/2023	Water	< 0.0050	0.16	0.15	0.16	<0.0050	<1.0	1	1	<1
PEL1754 ST-02	02	0	29/12/2023	Water	< 0.0050	0.12	0.12	0.12	< 0.0050	<1.0	<1	<1	<1
PEL1754 ST-03	03	0	29/12/2023	Water	< 0.0050	0.14	0.14	0.15	< 0.0050	<1.0	<1	<1	<1
PEL1754 ST-04	04	0	29/12/2023	Water	< 0.0050	0.13	0.12	0.13	< 0.0050	<1.0	<1	1	1
PEL1754 ST-05	05	0	29/12/2023	Water	< 0.0050	0.14	0.14	0.15	< 0.0050	<1.0	<1	<1	<1
PEL1754 ST-06	06	0	29/12/2023	Water	< 0.0050	0.15	0.15	0.15	< 0.0050	<1.0	<1	<1	<1
BFA0019 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0022 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0023 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0031 ST-01	DUP1	1	29/12/2023	Water	< 0.0050	-	-	-	< 0.0050	-	-	-	-
BFA0081 ST-01	DUP2	1	29/12/2023	Water	-	-	-	-	-	-	-	-	-
BFA0225 ST-01	DUP1	1	29/12/2023	Water	-	-	-	0.138	-	-	-	-	-

						Inorganics - Physical Parameters	Inorganics - Physical Parameters	Inorganics - Nutrients
						Total Dissolved Solids	Total Suspended Solids	Chlorophyll a
RptUnits						mg/L	mg/L	mg/m3
PQL						5.0	5.0	1.0
Matrix						Water	Water	Water
Method						INORG-018	INORG-019	INORG-119
Trigger values	for Marine Water	99%			-	-	-	
Groundwater	Investigation level	for Marine Wate	er			-	-	-
ANZECC Trigg	er value for slightly	disturbed ecosy	ystems (SV	V Australia - Ma	-	-	0.7	
Reference	Sample	Sample No.	Replicate	Date Sampled	Type of Sample	-	-	-
PFA1208	ST-01	01	0	23/01/2024	Water	41000	<5.0	<1.0
PFA1208	ST-02	02	0	23/01/2024	Water	49000	<5.0	<1.0
PFA1208	ST-03	03	0	23/01/2024	Water	41000	<5.0	<1.0
PFA1208	ST-04	04	0	23/01/2024	Water	41000	<5.0	<1.0
PFA1208	ST-05	05	0	23/01/2024	Water	41000	<5.0	<1.0
PFA1208	ST-06	06	0	23/01/2024	Water	41000	<5.0	<1.0
BFA2535	535 ST-06 DUP1 1 23/01/2024 Water		Water	40600	-	-		
BFA2536	ST-06	DUP1	1	23/01/2024	Water	-	<5.0	-