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Abstract. Trends of environmental change are influencing the behavior of many species across the
world, while highly mobile species are disproportionately impacted by climate change and human modifi-
cation. Here, we investigate the mechanisms behind climate change effects on the reproductive traits of
highly mobile, West Australian bird taxa, the forest red-tailed black cockatoo Calyptorhynchus banksii naso
(FRTBC). Using a dataset of annual breeding frequency spanning 19 yr, in combination with hydrological,
climatological, and remotely sensed data, we modeled the effects of environmental variation on the annual
breeding frequency of FRTBCs. We found several significant relationships between annual breeding fre-
quency of FRTBCs and environmental variation. While the model, which included a proxy for the avail-
ability of the cockatoo’s primary food source and the previous season’s rain, explained 49% of annual
breeding frequency, there were also direct and indirect effects of heatwaves and forest productivity. Forest
red-tailed black cockatoo breeding appears to be linked to the spatiotemporal availability of its primary
food sources, the fruit from the tree species, marri Corymbia calophylla and jarrah Eucalyptus marginata.
However, Western Australia is experiencing significant climate change, with increases in temperature and
declines in rainfall altering the phenologies of these species, while declining rainfall is affecting the vegeta-
tion structure of the region. As drought events and temperatures are anticipated to increase over the
region, it is expected that the food resources during the breeding season for cockatoos will become increas-
ingly limited in time and space, thus threatening the persistence of this iconic species. This scenario is likely
to be representative of many other situations where wide-ranging species rely on patchy food resources in
a changing environment. As global biodiversity is increasingly threatened, this study presents timely evi-
dence illustrating how climate change is affecting the persistence of a threatened, mobile species, and what
the implications are for mobile species around the world.
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INTRODUCTION

Climate change leaves a clear fingerprint on
ecosystems and influences the behavioral traits of
species (Both et al. 2006, Burrows et al. 2014).
Additionally, changes in local or regional climate

have been directly observed to impact on the sur-
vivorship and persistence of many species (Bild-
stein et al. 1990, Both et al. 2006, Plummer et al.
2015). This is particularly concerning for species
that time vital biological functions with climato-
logical and phenological cycles (Keast and
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Marshall 1954, Plummer et al. 2015). These func-
tions are often antecedent to natural events in the
environment, and certain stimuli (such as rain or
temperature) often trigger behaviors, such as
reproduction or migration (Keast and Marshall
1954, Runge et al. 2014, Plummer et al. 2015).
Long-term or punctuated climatic changes, such
as droughts or increasing temperature, can signif-
icantly alter ecological regimes, directly or indi-
rectly, causing a species to decline, shift its range,
or adapt its behavior (Burrows et al. 2014, Runge
et al. 2014, Plummer et al. 2015). Moreover, spe-
cies that are highly mobile are disproportionately
threatened by biophysical changes that may
result from climate change, or from human modi-
fication of the environment (Both et al. 2006,
Runge et al. 2014). This is because many mobile
species breed infrequently and their reproductive
behavior is closely related to natural cycles and
resource availability in a given space for a period
of time (Wyndham 1982, Areta et al. 2013), and
these resources can be significantly altered by
processes such as rising temperatures and declin-
ing rainfall (Both et al. 2006, Cameron 2009).
Changes in temperature can shift fruiting and
flowering events of vegetation, which may be the
primary food supply during the breeding season
for many species (Wale et al. 2012, Johnstone
et al. 2013a). Therefore, a mismatch between the
timing of breeding and peak food availability can
lead to significant declines in populations, as well
as affecting food chains and ecosystem functions
(Both et al. 2006). For example, rainfall patterns
have been observed to influence the abundance
of glossy black cockatoo Calyptorhynchus lathami
juveniles in Australia, where high rainfall years
are associated with greater proportions of fledg-
lings in the population (Cameron 2009). This is
because higher rainfall results in greater availabil-
ity of the glossy black cockatoos’ food source,
indicating that any regional hydrological changes
will likely affect the population dynamics of this
mobile species by directly altering food availabil-
ity. Climate change also affects the population
dynamics, ranges, and behaviors of other mobile
species. Monarch butterfly Danaus plexippus pop-
ulations that winter in relictual fir forests of cen-
tral Mexico are threatened by habitat contraction
due to warming temperatures (Oberhauser and
Peterson 2003). The projected loss of suitable win-
tering habitat due to climate change is expected

to cause significant declines in the eastern migra-
tory sub-population, and these threats will be
exacerbated due to logging activities across cen-
tral Mexico (Brower et al. 2002). Caribou Rangifer
tarandus in the Arctic time parturition to coincide
with the annual peak of resource available, which
occurs at the onset of the plant growth season. As
plant phenology is altered due to climate change,
a trophic mismatch has occurred during the cari-
bou’s breeding period, resulting in increased off-
spring mortality and greatly reduced offspring
production (Post and Forchhammer 2007).
A further issue in the conservation of mobile

species is that current biodiversity management
strategies are inadequate for conserving these
species as they transcend the geopolitical bound-
aries of traditional protection (Woinarski et al.
1992). Conservation plans are generally static in
time and space and are not appropriate for spe-
cies that undertake seasonal or dispersive move-
ments (Dhanjal-Adams et al. 2017). Peaks in
resource availability often coincide with popula-
tions congregating in a single location or engag-
ing in specific activities such as foraging and
breeding. Hence, resource loss from human mod-
ification, or changes to resource availability due
to climate change, during these key periods can
result in disproportionate impacts to population
abundance (Dhanjal-Adams et al. 2017). Thus, in
the face of change and uncertainty, protection for
critical ecological elements such as breeding and
stopover sites, networks, functional resources,
and habitat should become a priority for the con-
servation of the world’s mobile species (Runge
et al. 2014). Yet, assessing the environment and,
subsequently, a species’ persistence is challeng-
ing, as it requires systematic environmental and
autecological data spanning many years to deter-
mine any significant temporal trends. Previous
studies have successfully identified causal rela-
tionships between climate change and certain
behaviors and dynamics, such as range shifts
and population abundance in mobile bird species
(Bildstein et al. 1990, Both et al. 2006). However,
very little research has explicitly focused on the
frequency of successful breeding events over
time and their variation due to environmental
processes and climate change.
The forest red-tailed black cockatoo Calyp-

torhynchus banksii naso (FRTBC) is a vulnerable
subspecies of black cockatoo that is endemic to
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southwest Western Australia (SWWA; Chapman
2008). The FRTBC is a highly mobile species, and
previous studies have reported that the adults
travel long distances (>20 km/d) from their nests
in search of food and water, and these move-
ments are changing due to altered water and food
availability in SWWA forests (Johnstone et al.
2013a). The FRTBC form monogamous pairs, and
after breeding occurs, the juveniles are dependent
on the parents for roughly eighteen months to
two years after fledging (Johnstone et al. 2013b).
Previous studies have shown that breeding
occurs across all months of the year with peaks in
autumn (April–June) and spring (August–Octo-
ber) and breeding frequency varies significantly
between years (Johnstone et al. 2013a). Breeding
may occur during periods that coincide with the
fruiting of the FRTBC’s Principal feed trees, the
marri Corymbia calophylla and jarrah Eucalyptus
marginata, and fruiting quality or quantity may be
the primary factor influencing breeding fre-
quency. Over the last six decades, the FRTBC has
disappeared from approximately 30% of its for-
mer range, leaving a patchy distribution across
SWWA (Johnstone et al. 2013a). The FRTBC
range contraction is most likely due to climate
change, food availability, and habitat loss over
the SWWA (Cameron 2007). The SWWA has
experienced a significant decline in rainfall and
streamflow since the 1970s (Petrone et al. 2010,
Grigg 2017), while drought events and severity
have been increasing throughout the forests of
SWWA, potentially impacting on FRTBC food
quality and quantity (Ruthrof et al. 2015). Fur-
thermore, temperatures across the SWWA have,
on average, increased by approximately one
degree since the 1970s (Hughes 2003), further
affecting the ranges and habitat quality of many
species and impacting on natural ecological pro-
cesses, such as the flowering and fruiting phe-
nologies of myrtaceous trees (Law et al. 2000,
Chen et al. 2011, Wale et al. 2012).

This paper seeks to explore the mechanisms
behind FRTBC breeding variation and examine
potential links between breeding frequency and
regional environmental change over time. It is
hypothesized that the yearly variation in breed-
ing frequency of the FRTBC is controlled by vari-
ation in environmental processes such as rainfall,
temperature, or vegetation structure and phenol-
ogy. More broadly, we use the FRTBC as a focal

species to illustrate the impacts of climate change
on mobile species, and what the management
implications are for similar species.

METHODS

FRTBC breeding data
Forest red-tailed black cockatoo breeding

events were recorded from 1993 until 2011 across
the northern jarrah forest of SWWA, as per the
methods in Johnstone et al. (2013b), with surveys
conducted over both Swan and Murray River
catchments (Fig. 1). Forest red-tailed black cock-
atoo presence was established by locating feed-
ing residue or listening for calls. Once located,
lone males were followed back to their nests and
nest trees were recorded using a GPS. Breeding
events were confirmed by observing females at
the entrance to nest hollows during the day, and,
if the female was fed by a male in the evening
and subsequently returned to its nest to incubate,
it was considered a successful breeding attempt.
A total of 143 unique trees were surveyed over
the 19-yr period, and the recorded frequency of
breeding was highly variable between years. A
total of 175 total breeding events were observed
during the study period, with 104 and 71 events
observed over the Swan and Murray River catch-
ments, respectively. On average, there were 5.83
breeding events per year with a standard devia-
tion of 5.86, while breeding events ranged from 0
to 21. Yearly survey efforts remained constant
over the study period; however, knowledge of
nesting trees increased over time as additional
nesting sites were discovered.

Climate and environmental data
Numerous environmental covariates were pre-

pared for data analysis, and the variables, data
sources, and data types are summarized in
Table 1. Previous research has linked rainfall to
cockatoo breeding (Cameron 2009, Saunders
et al. 2013). Thus, rainfall variation was hypothe-
sized to be the primary factor driving FRTBC
breeding frequency. As breeding data were
spread over two catchments—the Swan and
Murray River catchments, with differing hydro-
logical regimes, they were spatially separated
across these catchments to explore any relation-
ships between rainfall (as well as other environ-
mental changes) and FRTBC reproduction
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Fig. 1. Map of the southwest Western Australia study area depicting the Swan and Murray River catchments.
Rain gauges and their corresponding Thiessen polygons are depicted as water droplets. Stream networks are
depicted as blue hydrolines, and Bureau of Meteorology weather stations are depicted as black temperature
gauges.

Table 1. The environmental variables used in this study to model the response of yearly FRTBC breeding
frequency.

Variable Description Source

Catchment Regions of the study area Geoscience Australia
Breeding frequency The response variable of FRTBC breeding events Johnstone et al.
Burnt area Total area of burnt vegetation (km2) Landsat
Extreme weather events Frequency of tornadoes, and hail and storm events BOM
Heatwaves Frequency of 3 or more days above the 95th

percentile for maximum temperature
BOM

Honey production The yield of wild honey produced by apiarists (tonnes) Wescobee Honey
Leaf area index The projected area of leaves over a unit of land (m2/m2) Landsat
Maximum temp Mean maximum temperature (°C) BOM
Minimum temp Mean minimum temperature (°C) BOM
NDVI Normalized difference vegetation index Landsat
Rain Spatially aggregated total precipitation (mm) BOM
Streamflow Volume of water passing through monitored streams (GL) BOM

Notes: BOM, Bureau of Meteorology; FRTBC, forest red-tailed black cockatoo. Data span the length of the study period
(1993–2011) and are representative for the entire extent of both the Swan and Murray River catchments.
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(Fig. 1). Rainfall data were sourced from the
Bureau of Meteorology (BOM) rain gauges,
which have been monitored since the early
1900s. Due to the relative sparseness of rain
gauges across the landscape, it was determined
that rainfall for the region would be aggregated
across space and time. Aggregated rainfall for
each year over each catchment was calculated
using the following equation (Davie 2008):

Rt ¼
Xn

i¼t

ri;t � ai
A

where Rt is the spatially aggregated rainfall over
a catchment in year t, ri,t is the rainfall at gauge i
(mm) in year t, ai is the area of the unique Thies-
sen polygon (the area closer to the corresponding
gauge than any other gauge) surrounding rain
gauge ri (km

2), and A is the total area of the
catchment (km2). Yearly standard errors in rain-
fall were also calculated to determine whether
within-year variation in rainfall might be influ-
encing breeding frequency. To further explore
how water availability and flux may be influenc-
ing FRTBC breeding, streamflow (Q, gigaliters)
was sourced from BOM hydrological reference
stations, and was aggregated across the Swan
and Murray River catchments, and totaled for
each year.

Previous studies have shown how local vege-
tation conditions (such as primary productivity)
can influence breeding in migratory birds, where
years of high normalized difference vegetation
index (NDVI) were correlated with increased
clutch sizes (Saino et al. 2004). Yearly vegetation
condition and structure were estimated over
both catchments from remotely sensed, historical
Landsat 7 ETM+ imagery. Band sets for each year
from both the winter (June–August) and summer
(December–February) seasons, to account for
any phenological variation, were geometrically
co-registered and then corrected to top of atmo-
sphere reflectance using the following equa-
tion (Chander et al. 2009):

qk ¼
p� Lk � d2

ESUNk � cos h

where qk = Planetary TOA reflectance (unitless),
p = Mathematical constant equal to ~3.14159,

Lk = Spectral radiance at the sensor’s aperture
(W/(m2 sr lm)), d2 = Earth–Sun distance (astro-
nomical units, AU), ESUNk = Mean exoatmo-
spheric solar irradiance (W/(m2 lm)), hs = Solar
zenith angle (°). A simple dark object subtraction
(Chavez 1988) was applied to the TOA reflec-
tance imagery to calculate the reflectance at the
base of the atmosphere. Bands were then cor-
rected using linear regression and mosaicked
before being masked over each of the study
catchments. NDVI was then calculated using the
following equation (Lillesand et al. 2014):

NDVI ¼ qnir � qred
qnir þ qred

where qnir is the reflectance in the near-infrared
band (unitless), and qred is the reflectance in the
red band. Leaf area index (LAI, the projected
area of leaves over a unit of land) for both catch-
ments was formulated using the following rela-
tionship which was derived from a previous
study across the jarrah forest (Waring and Run-
ning 2007, Macfarlane et al. 2017):

LAI ¼ 4:45�NDVI1:42

Fire plays an important role in Australian
ecosystems and has been shown to impact on the
abundance and occurrence of bird species (Woi-
narski 1990). The extents of fire-affected regions
for both catchments were derived from differ-
ence normalized burn ratios (DNBR):

DNBR ¼ prefireNBR� postfireNBR

where prefire and postfire NBR’s data were
derived from data between the Western Australia
fire seasons (October–May), and normalized
burn ratios (NBR) were calculated as follows
(Leon et al. 2012):

NBR ¼ qnir � qswir

qnir þ qswir

where qSWIR is the reflectance in the shortwave-
infrared band (unitless). Recently burnt and
regenerating vegetation was delineated from
the DNBR data using 0.25 and �0.25 cutoff,
respectively.
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Changes in regional temperatures have been
shown to impact the reproductive response of
bird species (Both et al. 2006). Thus, mean maxi-
mum and mean minimum temperatures (°C)
were sourced from BOM weather stations and
aggregated across each of the catchments from
1960 to 2017 (Fig. 1). Extreme climate events
(sourced from BOM weather stations over each
catchment), which were the yearly frequency of
severe wind gusts, tornadoes, and damaging hail
and storm events, were included as potential
covariates, as these types of events have been
shown to impact the populations of the Carnaby’s
black cockatoo (Saunders et al. 2011). Addition-
ally, the yearly frequency of heatwaves was
hypothesized to be an important factor on FRTBC
breeding, as extreme heat has been shown to neg-
atively impact on the reproductive cycles and out-
puts of eucalypt species, and such tree species
provide the primary food sources for the FRTBC.
Heatwaves occurring during flowering periods
could significantly reduce the proportion of flow-
ers that develop into fruit and provide food for
the FRTBC (Setterfield and Williams 1996, House
1997). Heatwaves are defined by BOM as
“. . .three or more days of unusually high maxi-
mum temperatures in any area.” In this study, we
considered a heatwave to be three ormore consec-
utive days of temperatures above the 95th per-
centile for the respective catchment, which was
determined to be 37.7°C and 34.8°C for the Swan
andMurray River catchments, respectively.

Food availability is one of the primary factors
influencing breeding for many bird species (Mar-
tin 1987). However, there were no data on
FRTBC food quality/quantity for the region over
the study period, nor were there data on feed
tree flowering and fruiting; hence, we included
honey production across SWWA as a proxy mea-
sure for the quality of flowering and fruiting in
different years. Monthly honey production data
(tonnes) for the SWWA (from 1992 to 2012) were
sourced from Wescobee Honey. Wescobee Honey
is the second largest exporter of honey in Aus-
tralia and refines and distributes wild honey that
has been harvested by apiarists who establish
their hives among the jarrah and karri forests of
the SWWA (Wescobee Honey 2018). We used the
honey production data (the total monthly yield
of wild honey) during February and March, the
primary months of marri flowering as a proxy

for regional marri flowering magnitude. The fruit
from marri trees is the FRTBC’s Principal food
source (Johnstone and Kirkby 1999), and as flow-
ering magnitude generally results in higher fruit
production in subsequent years (House 1997), it
was hypothesized that higher honey production
would correspond with higher food production
and therefore higher FRTBC breeding frequency.
Very few other plant species flower during
February and March, and none flower in abun-
dance; thus, we were confident this provided an
accurate proxy of annual variations in marri
flowering intensity.

Statistical analysis
We used generalized linear modeling to inves-

tigate relationships between the environmental
predictors described above (the independent
variables) and breeding frequency (the number
of breeding events in each year, the dependent
variable). We assumed a Poisson error distribu-
tion and a log link function to account for the fact
that the dependent variable was count data
(Zuur et al. 2007). Initial data visualization indi-
cated that breeding frequency might be higher in
years where there had been moderate (rather
than high or low) rainfall two years prior and
breeding frequency and so linear and quadratic
terms were included for rain to account for this
possible non-linear relationship. In general,
yearly breeding frequency was observed to be
increasing over time, and year was included in
the model as a continuous predictor to account
for any effect of increasing survey efficiency over
time. Terms for all environmental parameters at
lags of one (t � 1) and two (t � 2) years were
included in the models to allow for any time lag
in response to environmental cues. Prior to statis-
tical investigation, variance inflation factor (VIF)
analysis was performed on continuous variables
to assess collinearity, and terms with a VIF value
above 10 were iteratively excluded from formal
analysis (Zuur et al. 2007). Some covariates,
namely NDVI (collinear with LAI) and Stream-
flow (collinear with Rainfall), were subsequently
removed from the pool of model parameters. Fol-
lowing this, all predictor variables were mean-
standardized so that model parameter estimates
would be comparable (Gelman 2008). To avoid
overfitting and to determine the most parsimo-
nious set of model predictors, a full subset
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selection, using an exhaustive search with a max-
imum parameter threshold of 3, was applied to
the dataset under Bayesian inference criterion
(James et al. 2013). The pseudo-R2 (1 � (residual
deviance/null deviance)) of each of the five best
models was estimated to show how much varia-
tion is being explained by each. After accounting
for the yearly time lags, there were 30 observa-
tions available for statistical inference. Models
were tested for overdispersion, and it was found
that that the model fits were significantly
overdispersed (P = 0.001), and so a quasi-Pois-
son error distribution was assumed to correct for
this issue. Further regression analysis, using a
simple linear model, was conducted on the
honey production data to determine whether
any environmental predictors were influencing
wild honey yields. The threshold of statistical
significance was considered to be P < 0.05. All
spatial data manipulation and analysis were
undertaken in ArcGIS Desktop version 10.6
(Environmental Systems Research Institute
2017), and statistical modeling and data manipu-
lation were undertaken in R version 3.5.1 (R Core
Team 2018). Data visualization was performed
using ggplot2 package (Wickham 2016), while
subset selection was performed using the leaps
package (Lumley 2017).

RESULTS

The five best models included combinations of
Year, Rain, Honey production, Heatwaves, and
Burnt area (Table 2). These models show that the
non-linear effect of Rain(t�2) was a significant
term (Fig. 2a). Honey production(t�1) was a
highly significant predictor in several models
and had a strong positive effect on annual breed-
ing frequency (Fig. 2b). Even though Year was

shown to have a significant positive effect on
breeding frequency, the other environmental
parameters remained significant when included

Table 2. Results of the various generalized linear models fitted in this study to determine the relationships
between FRTBC yearly breeding frequency and standardized environmental covariates.

Model Burnt area Honey production(t�1) Heatwaves(t�1) Rain(t�2) Rain2
ðt�2Þ Year R2

1 <0.001 (0.51) <0.000 (0.59) 0.56
2 <0.000 (0.59) 0.022 (5.823) 0.016 (�6.09) 0.49
3 0.006 (�0.49) 0.004 (8.77) 0.003 (�8.75) 0.41
4 0.016 (0.50) 0.303 (�0.20) 0.29
5 0.638 (�0.09) 0.049 (�0.42) 0.14

Note: Five model combinations, determined by full subset selection, with their respective parameter P-values and response
estimates in brackets have been reported.

Fig. 2. The significant univariate relationships
between forest red-tailed black cockatoo breeding fre-
quency and environmental covariates. Panel (a) depicts
the relationship between breeding events and rainfall,
panel (b) represents the relationship between breeding
events and honey productions, and panel (c) represents
the relationship between breeding events and heatwaves.
Black lines represent the univariate linear model fits, and
the gray bands represent the 95% confidence intervals.
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in a model with Year, indicating that these envi-
ronmental parameters explained variation in
breeding that was additional to that explained by
the general increasing trend over time. The
pseudo-R2 of the model that included Rain and
Honey production year was 0.49, suggesting that
Rain and food availability (as represented by a
proxy) are explaining approximately half the
variability in yearly FRTBC breeding frequency.
Moreover, when honey production was tested as
the dependent variable, Rain(t�1) and LAI had
significant positive effects (P = 0.027 and <0.001,
respectively).

DISCUSSION

Our model results indicated that FRTBC yearly
breeding frequency was non-random and that
yearly variation in breeding frequency was likely
due to the availability or quality of food in any
given year, which in turn appeared to be influ-
enced by environmental factors, such as rainfall
and forest productivity. This finding is in accord
with previous research conducted on a wide
range of bird species avifauna and their response
to climate change. The magnitude of breeding by
American white ibis Eudocimus albus was linked
to the availability of their principal prey species
(crayfish), which was in turn influenced by sea-
sonal rainfall variability (Bildstein et al. 1990). In
addition, the migratory behavior and range of
the Eurasian blackcap Sylvia atricapilla were
altered by increasing temperatures (Plummer
et al. 2015), while the European Pied flycatcher
Ficedula hypoleuca populations across the Nether-
lands were deleteriously affected by changes in
the peak availability of their principal food
source, caterpillars, due to climate change (Both
et al. 2006). Among cockatoos, glossy black cock-
atoo reproduction is closely related to rainfall
variation and conservation of this species must
take into account the potential impacts of climate
change, and Carnaby’s cockatoos synchronize
egg-laying with rainfall seasons, with alterations
to regional hydrology predicted to affect the
reproductive behavior of this threatened species
(Cameron 2009, Saunders et al. 2013).

With regard to the FRTBC, it appears that the
availability of their principal food, the fruit from
marri and jarrah trees, is a primary driver of
yearly breeding variation. This is congruent with

the considerable research that has been con-
ducted on factors influencing avian breeding,
with the availability of food during the breeding
season identified as one of the primary limiting
factors of breeding magnitude (Martin 1987).
Johnstone et al. (2013a) state that “[FRTBC]
breeding occurred at times of fruiting of either
the Principal feed trees, jarrah E. marginata or
marri C. calophylla, so it does not depend solely
on one or the other of these species.” Though no
direct data measuring eucalyptus fruiting trends
are available, including the proxy of regional
honey production into the model indicated a
non-random effect between marri food availabil-
ity and breeding. Honey production is a suitable
proxy for the flowering and fruiting of the marri
tree, as intense flowering is associated with an
increased honey yield between February and
March, the typical period of marri flowering for
the region (Wale et al. 2012). This notion is sup-
ported by the fact that apiarists across south
Western Australia capitalize on events of mass
marri blossoming, which result in higher honey
yields (Pancia 2018). Further, fruit maturation in
eucalypts generally occurs 8–12 months after
flowering and the abundance of fruiting in the
subsequent year is directly correlated with flow-
ering intensity (House 1997, Law et al. 2000).
Thus, the peak availability of food for the FRTBC
would occur in autumn and spring approxi-
mately 13–18 months after flowering, a notion
that is supported by the data and results. The
flowering and fruiting of eucalypts is associated
with patterns of temperature, solar radiation,
and the previous season’s rainfall (House 1997).
Often, seasonal fluctuations in temperature and
rainfall correlate with flowering intensity and
bud formation in the succeeding two years.
Moreover, drought and extreme temperatures
have been shown to negatively impact on repro-
ductive processes of many eucalypts, often caus-
ing affected stands to abort floral bud initiation
(House 1997, Law et al. 2000). Therefore, signifi-
cant flowering years may not necessarily trans-
late to significant breeding years, as droughts or
heatwaves may interfere with bud formation and
fruit production and the fact that heatwaves had
a significant negative effect on breeding fre-
quency in our model is consistent with this
notion. Given that the region is experiencing
increased temperatures and droughts, and we
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have shown that these factors directly influence
the availability of the FRTBC’s food sources,
there will likely be an impact on the overall
abundance of the population, which will inevita-
bly present complex conservation challenges for
the species in the future.

Nevertheless, our statistical and ecological
inference assumes, and is predicated on, the
notion that wild honey yield is associated with
eucalyptus flowering magnitude in Western Aus-
tralia and thus the availability of the FRTBC’s pri-
mary food source. Our inference is also limited by
the generality of the environmental and breeding
data. Because nesting trees were scattered over
wide geographic extents, and no direct environ-
mental data were recorded during the breeding
survey, spatial aggregation of the hydrological,
ecological, and climatological data was necessary
for analysis. Thus, the variation in breeding
events may not be adequately explained due to
the mismatch between the spatiotemporal scale of
the environmental variables and FRTBC breeding
surveys. However, it is logical to assume there
would be less chance of observing significant rela-
tionships given this spatiotemporal mismatch, yet
there remain several significant trends in the data,
which supports the notions that, at a broad scale,
FRTBC breeding is influenced by the availability
and flux of their food. The most significant limita-
tion lies in the fact that eucalypt fruiting and flow-
ering data are lacking for the region. Given that
fruiting cycles of marri, and potentially jarrah,
appear to be influencing FRTBC breeding fre-
quency and that other studies have shown how
avifaunal breeding often correlates to food avail-
ability, it is likely these data, rather than a proxy,
would have greatly improved model outcomes.
Regardless of these limitations, FRTBC breeding
frequency appears to be linked to peak food avail-
ability, and food availability is a function of the
climatological, hydrological, and ecological pat-
terns across the region.

Knowledge of what is driving the breeding of
this vulnerable, iconic species can aid in manage-
ment and recovery plans across the region,
allowing for predictions of population fluctua-
tions that may occur from climate change. Feed
trees are important for FRTBC breeding, and
fruit production in feed species depends on the
previous season’s rainfall and temperature (Set-
terfield and Williams 1996, House 1997). Hence,

climate change is likely to reduce food availabil-
ity in the future. These risks from climate change
are further accentuated as FRTBC habitat contin-
ues to be cleared for mining, logging, and urban-
ization (Cameron 2007), rendering spatially and
temporally patchy food resources even patchier.
The current recovery plan for threatened cocka-
toos in Western Australia mentions that climate
change is a threat to these species (Chapman
2008). However, the recovery plan lacks any
detail on the mechanistic effects of climate
change on cockatoo populations, as well as any
management considerations for future conse-
quences. As hydrological and climatological
regimes change across the region, the availability
and distribution of the FRTBC’s food sources will
alter as a response. Therefore, the recovery plan
needs to account for range shifts that will occur
as the FRTBC changes its foraging activities, as
well as population declines that may occur from
a trophic mismatch between their breeding sea-
sons and eucalypt fruiting periods.
In conclusion, our study highlights the impor-

tance of examining likely mechanisms underlying
species’ responses to climatic variation and
change. In the case of the FRTBC, the effect of cli-
mate plays out through its impact on food
resources, rather than on the species directly.
Broadly, our study suggests that mobile species
are challenging to protect and are particularly
vulnerable to extinction, as they explicitly rely on
spatially patchy and temporally transient
resources, while climate change and human mod-
ification are altering the availability and extent of
these critical resources (Runge et al. 2014). A key
question arises as to how we can effectively man-
age the patchy and ephemeral resources that
mobile species rely on, and mitigate the changes
that will occur to their availability resulting from
climate change. With climate trends expected to
intensify across the world, the resources that
mobile species utilize will likely become scarcer
which will, in turn, increase their risk of extinc-
tion, presenting a complex conservation conun-
drum for the future.
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