

Providing sustainable environmental strategies, management and monitoring solutions to industry and government.

OAKAJEE PORT AND RAIL – OAKAJEE TERRESTRIAL PORT DEVELOPMENT -STYGOFAUNA ASSESSMENT This page has been left blank intentionally

OAKAJEE PORT AND RAIL OAKAJEE TERRESTRIAL PORT DEVELOPMENT STYGOFAUNA ASSESSMENT

Docur	Document Status								
Rev.	Author	Reviewer/s	Date	Approved for Issue					
Rev.	Author	Reviewer/s	Date	Name	Distributed To	Date 8/12/09			
1	M. Davis	C. Miller	July 2009						
2	L. Quinn	M. Davis	December 2009	M. Davis	C. Miller	8/12/09			
3	C. Taylor	M. Davis	January 2010	M. Davis	C. Miller	18/1/09			

ecologia Environment (2010). Reproduction of this report in whole or in part by electronic, mechanical or chemical means including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of Oakajee Port and Rail Ltd and/or *ecologia* Environment.

Restrictions on Use

This report has been prepared specifically for Oakajee Port and Rail Ltd. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of Oakajee Port and Rail Ltd and/or *ecologia* Environment.

ecologia Environment 1025 Wellington Street WEST PERTH WA 6005 Phone: 08 9322 1944 Fax: 08 9322 1599 Email: <u>admin@ecologia.com.au</u>

TABLE OF CONTENTS

ACRON	IYMS	V
GLOSSA	ARY	VI
1	INTRODUCTION	1
1.1	AIMS AND OBJECTIVES	3
1.2	LEGISLATIVE FRAMEWORK	3
2	METHODS	5
2.1	FIELD METHODS	5
2.2	TAXONOMIC TREATMENT	6
2.3	SURVEY TEAM	6
3	RESULTS	11
3.1	OVERVIEW	11
3.2	TAXONOMY	12
3.3	PHYSIO-CHEMICAL AND NUTRIENT RESULTS	14
4	DISCUSSION AND CONCULSIONS	19
5	REFERENCES	21

TABLES

Table 2-1	The List of Functional Bores Installed by Rockwater between 1995-19997
Table 3-1	Bores Sampled and Stygofauna Present in the Study Area (marked with *)11
Table 3-2	Summary of Phase 1 and Phase 2 Stygofauna Findings12
Table 3.3	Field Data for Bores Sampled During the Phase 1 (August 2006) and Phase 2 (October - November 2006) Surveys
Table 3.4	Laboratory Data for Bores Sampled During the Phase 1 (August 2006) and Phase 2 (October - November 2006) Surveys

FIGURES

Figure 1.1	The Location of the OPR Terrestrial Port Development	2
Figure 2.1	The Location of the 17 Bores Sampled for Stygofauna at the OPR Terrestrial P Development	
Figure 3.1	The Location of Bores with Stygofauna present	.13

APPENDICES

APPENDIX 1	Graphical Representation of all Physico-Chemical and Nutrient Parameters measured by
	ecologia and Rockwater23

ACRONYMS

ВОМ	Bureau of Meteorology
САМВА	China – Australia Migratory Bird Agreement
DEC	Department of Environmental Conservation
DEWHA	Depa rtment of the Environment, Water, Heritage and the Arts
EIA	Environmental Impact Assessment
EPA	Environmental Protection Authority
EPBC Act	Environment Protection and Biodiversity Conservation Act 1950
IBRA	Interim Biogeographic Regionalisation for Australia
JAMBA	Japan-Australia Migratory Bird Agreement
OPR	Oakajee Port and Rail
SAC	Species Accumulation Curve
WCA, WC Act	Wildlife Conservation Act 1950

GLOSSARY

Approved Port The deepwater port facility at Oakajee for which the Department of State Development is the proponent. This Project was approved by the WA Government in 1998, with the release of Ministerial Statement 469 (Approved Port), and more recently updated with an approved Section.

Conservation Significant This term is applied to species which are protected under the *Environment Protection and Biodiversity Conservation Act 1999*, the *Wildlife Conservation Act 1950*, or are listed by the Department of Environment and Conservation as priority fauna.

Oakajee Port and Rail Development The larger OPR project comprising the marine port, terrestrial port and rail components, each the subject of a separate approvals process.

The Project The Project refers to the footprint of this development as outlined in the PER.

Study Area An area larger than the Project, surveyed for the purpose of biological studies. The area may generally be described as extending approximately 12 km along the coast (between the Oakajee and Buller Rivers) and approximately 7 km inland at its widest point.

EXECUTIVE SUMMARY

Oakajee Port and Rail Pty Ltd (OPR) proposes to construct a deepwater port and terrestrial iron-ore handling facilities at Oakajee. The site is located 24 kilometres north of Geraldton, within the proposed Oakajee Industrial Estate, between the Oakajee and Buller Rivers. The terrestrial facilities proposed that are of interest to this study include the port rail system, access and service corridors, a car dumper, stockpiles, ore in-loading and out-loading infrastructure, and supporting facilities. The current proposal does not involve dewatering of the ground water table.

OPR commissioned *ecologia* Environment (*ecologia*) to undertake a baseline stygofauna survey of bores within Terrestrial Port Development. The aim of the stygofauna sampling programme was to define the abundance, diversity and distribution of stygofauna in the Study Area.

Numerous bores were constructed on the Oakajee land lease between 1963 and 1999 to facilitate assessment of the groundwater resources in the area. Of the 22 functional bores installed by Rockwater between 1995 and 1999, 17 were available for stygofauna and/or water-quality investigations.

Three species of stygofauna representing two classes and three orders were recorded – two syncarids, one calanoid copepod and one harpacticoid copepod. The syncarid specimens are new to science and have not been recorded elsewhere in Western Australia. In the case of the copepods, one specimen was damaged and the other was a juvenile, thus both could not be identified to species level. Given the extent of the habitat outside the Study Area it is considered that the species extends well beyond the study area and is unlikely that the project represents a significant threat at a population level.

The overall physico-chemical data gathered during both phases of sampling indicated conditions for stygofauna occurrence. Higher levels of nitrite and phosphorus found in OK10, OK12, OK18 and OK22 could be caused by agricultural land use, nevertheless they did not seem to affect stygofauna habitation (the copepods and syncarids were found in bore OK18).

This page has been left blank intentionally

1 INTRODUCTION

Oakajee Port and Rail Pty Ltd (OPR) proposes to construct a deepwater port and terrestrial iron-ore handling facilities at Oakajee. The site is located 24 km north of Geraldton, within the proposed Oakajee Industrial Estate, between the Oakajee and Buller Rivers. The terrestrial facilities proposed that are of interest to this study include the port rail system, access and service corridors, a car dumper, stockpiles, ore in-loading and out-loading infrastructure, and supporting facilities. The current proposal does not involve dewatering of the ground water table.

OPR commissioned *ecologia* Environment (*ecologia*) to undertake a baseline stygofauna survey of bores in the vicinity of the Project in order to ascertain the presence or absence of stygofauna. The Study Area (bounded by the Buller and Oakajee Rivers, North West Coastal Highway and the Indian Ocean) is presented in Figure 1.1. Numerous bores were constructed on the Oakajee lease between 1963 and 1999 to facilitate assessment of the groundwater resources of the area (Davies and Associates 1993; Rockwater 2000). Of the 22 functional bores installed by Rockwater between 1995 – 1999 (Rockwater 2000), 17 were available for stygofauna and or/water quality investigations.

Stygofauna ("stygo" meaning adapted to living underground) are obligate, groundwater dwelling fauna known to be present in a variety of rock types including karst limestones, fissured rock (e.g. granite) and porous rock (e.g. alluvium) (Mamonier et al. 1993). They are typically adapted for the subterranean environment with features including lack of pigmentation, elongated appendages, filiform body shape (worm like) and reduced or absent eyes. Many of these fauna have other primitive features which link them to geological periods when vast areas of Australia were covered by tropical forests. They are therefore regarded as 'relict' fauna, which have survived in aquifers over geological timeframes (Humphreys 1993; Danielopol and Stanford 1994).

The presence of stygofauna in Western Australia has been well documented, from regions such as the Pilbara, Kimberley, Mid West and South West (De Laurentiis et al. 2001; Humphreys 2001; Wilson and Keable 2002; Eberhard 2004; Karanovic 2004; Cho et al. 2005). Despite the fact that stygofauna of the Geraldton region is largely unknown and little published material exists to date, the geology of the region is relatively well documented, allowing for some predictions in regard to potential suitable habitats for stygal species. For example, the groundwater of lithified karstic eolianite on Swan Coastal Plain, the Tamala Limestone, is inhabited by the copepods *Metacyclops fiersi* and *Halicyclops eberhardi* (De Laurentiis et al. 2001). As a strip of these limestone outcrops continues along the coast to the Study Area, the possibility exists that stygofauna inhabit bores situated within the limestone strip (Rockwater 2003).

The Study Area is located on an elevated plateau (70 -100 m AHD) underlain by a westward-dipping surface of granulite bedrock and 40 - 50 m of sedimentary strata (Rockwater 2000). Groundwater forms a veneer within and above the bedrock-sediment contact surfaces. This veneer is recharged by rainfall and it flows predominantly westward towards the coast (Rockwater 2000). The unconfined groundwater aquifers comprise locally weathered bedrock and overlying siltstone (Chapman Group), Tamala Sand and superficial sand capped by Tamala Limestone at the western enscarpment. Generally, the strata are hydraulically connected and groundwater passes between them (Rockwater 2000).

1.1 AIMS AND OBJECTIVES

ecologia was commissioned by OPR to conduct a baseline stygofauna survey in the Study Area to define the abundance, diversity and distribution of stygofauna so that strategies to ensure the protection of important habitats for subterranean communities could be developed, should stygofauna be present.

The scope of works included two phase sampling of 17 groundwater monitoring bores and the reporting of stygofauna presence.

1.2 LEGISLATIVE FRAMEWORK

The *Environmental Protection Act 1986* is "an Act to provide for an Environmental Protection Authority, for the prevention, control and abatement of environmental pollution, for the conservation, preservation, protection, enhancement and management of the environment and for matters incidental to or connected with the foregoing." Section 4a of this Act outlines five principles that are required to be addressed to ensure that the objectives of the Act are addressed. Three of these principles are relevant to native fauna:

• The Precautionary Principle

Where there are threats of serious or irreversible damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation.

• The Principles of Intergenerational Equity

The present generation should ensure that the health, diversity and productivity of the environment is maintained or enhanced for the benefit of future generations.

• The Principle of the Conservation of Biological Diversity and Ecological Integrity

Conservation of biological diversity and ecological integrity should be a fundamental consideration.

Projects undertaken as part of the Environmental Impact Assessment (EIA) process are required to address the guidelines produced by the EPA, in this case Guidance Statement 54: *Consideration of Subterranean Fauna in Groundwater and Caves during Environmental Impact Assessment in Western Australia* (EPA 2003) and Guidance Statement Technical Appendix 54A: Sampling Methods and Survey Considerations for Subterranean Fauna in Western Australia (EPA 2007).

Native fauna in Western Australia are protected at a Federal level under the *Environment Protection* and *Biodiversity Conservation Act 1999* (EPBC Act) and at a State level under the *Wildlife Conservation Act 1950* (WC Act).

The EPBC Act was developed to provide for the protection of the environment, especially those aspects of the environment that are matters of national environmental significance; to promote ecologically sustainable development through the conservation and ecologically sustainable use of natural resources and to promote the conservation of biodiversity. The EPBC Act includes provisions to protect native species (and in particular prevent the extinction, and promote the recovery, of threatened species) and ensure the conservation of migratory species. In addition to the principles outlined in Section 4a of the EP Act, Section 3a of the EPBC Act includes a principle of ecologically

sustainable development dictating that decision-making processes should effectively integrate both long-term and short-term economic, environmental, social and equitable considerations.

The WC Act was developed to provide for the conservation and protection of wildlife in Western Australia. Under Section 14 of this Act, all fauna and flora within Western Australia is protected; however, the Minister may, via a notice published in the *Government Gazette*, declare a list of fauna taxa identified as likely to become extinct, or is rare, or otherwise in need of special protection. The current listing was gazetted on the 5th August 2008.

2 METHODS

The survey for stygofauna in the Study Area was carried out according to the requirements of stygofauna survey as outlined by the guidance statement 54 (EPA 2003).

2.1 FIELD METHODS

Sampling of the 17 bores took place in three stages:

- 1. The physical parameters of the bore described (with findings presented in Table 2.1):
 - bore location, using a Global Positioning System (GPS);
 - the construction material of each bore (e.g. PVC, steel); and
 - the bore diameter (mm).
- 2. In-situ water chemistry measurements were gathered using a 90 FL multi-parameter meter. The standing water level of each bore was obtained using Solinst water level meter. All water samples sent for laboratory analysis were obtained using sterile one-use bailers. All samples were kept on ice until transported to the Perth laboratories.

The following parameters were measured for each of the bores sampled at approximately 30 cm below the standing water level:

- the depth to ground water [m];
- total bore depth [m];
- temperature [°C];
- pH;
- conductivity [mS/cm];
- Total Dissolved Salts (TDS) [ppK];
- Oxygen Reduction Potential (ORP) [mV]; and
- Dissolved Oxygen (DO) [ppM];
- 3. Stygofauna sampling followed methods recommended by the EPA (2003). The entire water column was dragged for stygofauna a total of six times; three times using a 150 μm net and a further three times using a 50 μm net. The specific methods were as following:
 - Stygofauna samples were kept on ice in the field and in a dark location before transportation to Perth. Once in Perth, they were stored out of direct sunlight.
 - An appropriate net diameter was chosen (most commonly 47 mm) and the net was slowly lowered into the bore until it hit the bottom. Care was taken not to let the net free fall.
 - Once the net had reached the bottom of the bore, it was gently raised and lowered approximately 1 m, six times, to stir up the sediments at the bottom.

- The net was then slowly pulled up through the water column (approx 1 m/sec) in order to reduce the chance of animals avoiding capture by riding the bow wave at the top of the net.
- Once the net was at the surface, it was immediately placed in a 50 µm Endicott sieve. The vial was removed from the net and all contents washed into the sieve using deionised water. The net was thoroughly rinsed over the sieve.
- The sieve contents were then washed into one corner and transferred into 120 mL preservation vials containing absolute ethanol (100%).
- Each vial was labelled with the date and bore name.
- Following sampling, all equipment was placed into a 25 L tub containing Decon90[®] for cleaning to prevent cross-contamination of sites.
- Sample sorting was completed at ecologia's Perth laboratory.

Eight bores out of the original 22 bores developed by Rockwater (2000) (see Table 2-1) were not sampled for the following reasons:

- bores OK 3 and OK 13 could not be located;
- bores OK 21 and OK 23 could not be sampled due to their small diameter;
- bore OK 1 was situated next to bore OK1A in the same aquifer and thus was not sampled;
- OK 7, OK 8 and OK 19 as they were dry.

No stygofauna net samples could be taken in bores OK 4 (Phase 1), OK 5, OK 12 and OK 20 (Phase 2) due to sediments suspended in water column, and OK 22 (Phase 1) due to small bore diameter; however water quality data were collected.

2.2 TAXONOMIC TREATMENT

All taxa were identified to the lowest taxonomic resolution possible by *ecologia* scientists. Subsequent identification and verification was conducted by Dr Brenton Knott and Dr Danny Tang at the University of Western Australia. All specimens were immediately placed in 100% absolute ethanol to enable genetic analysis if deemed necessary. All vials were labelled with the date, site, GPS coordinates, the name of the collector and the size of mesh aperture used to collect the animals.

2.3 SURVEY TEAM

The stygofauna survey was undertaken by the following *ecologia* personnel:

- Garry Connell Principal Zoologist
- Magdalena Davis (nee Zofkova) Manager Invertebrate Sciences

Table 2-1The List of Functional Bores Installed by Rockwater between 1995-1999.

BORE		NTION 184; zone 50J)	CONSTRUC-TION MATERIAL	DIAMETER (mm)	SAMPLED IN THIS	AQUIFER TYPE
	Easting	Northing				after Rockwater (2000)
OK1	264297.1	6834955	PVC	54	No - next to OK1/A	Tamala limestone
OK1/A	264295.2	6834968	PVC	54	*	Tamala limestone
OK2	265537.9	6832618	PVC	54	*	Chapman group sediments
ОКЗ	264791.3	6832524	PVC	54	No - not located	Tamala limestone and Quaternary silt
OK4	265762.8	6832385	PVC	54	* P2 only	Chapman group sediments
OK5	265904.5	6832714	PVC	54	* P1 only	Chapman group sediments
OK7	264581.1	6835024	PVC	54	Dry	Granulite bedrock
OK8	264870.9	6835133	PVC	54	Dry	Granulite bedrock
OK9	265387.2	6835173	PVC	54	*	Tamala sand
OK10	266994.6	6835462	PVC	54	*	Chapman group and superficial sand
OK11	267064.9	6832754	PVC	54	*	Chapman group sediments
OK12	265374.2	6832571	PVC	54	* P2 only	Tamala sand
OK13	265917.6	6831087	PVC	54	No - not located	Chapman group sediments
OK14	267045.4	6831850	PVC	54	*	Tamala sand
OK15	266692.0	6836249	PVC	54	*	Greenough sandstone

OPR Oakajee Terrestrial Port Development

Oakajee Stygofauna Assessment

BORE		TION 84; zone 50J)	CONSTRUC-TION MATERIAL	DIAMETER (mm)	SAMPLED IN THIS SURVEY	AQUIFER TYPE
	Easting	Northing				after Rockwater (2000)
OK17	265420.4	6832866	PVC	54	*	Tamala sand
OK18	265486.1	6833249	PVC	54	*	Chapman group sediments
OK19	265094.5	6834480	PVC	54	Dry	Granulite bedrock
OK20	265075.5	6835912	PVC	54	* P1 only	Chapman group sediments
OK21	265649.3	6833650	PVC	50	No - small diam.	Tamala sand
OK22	266211.4	6835803	PVC	50	No - small diam.	Chapman group sediments
OK23	266199.1	6831850	PVC	50	No - small diam.	Chapman group sediments

This page has been left blank intentionally

10

May 2010

3 RESULTS

3.1 OVERVIEW

Although no stygofauna was found during Phase 1 of the surveying conducted in the study area, Phase 2 collected stygofauna specimens in three bores (OK11, OK15 and OK18 – see Table 3-1). All specimens collected during surveying had stygomorphic characteristics, indicating that they are obligate subterranean species.

BORE ID	STYGOFAUN	IA SAMPLED	STYGOFAUNA PRESENT		
DORE ID	August 2006	Oct - Nov 2006	August 2006	Oct - Nov 2006	
OK1A	*	*			
OK2	*	*			
ОК4	Water-quality data only	Water-quality data only			
ОК5	Water-quality data only	Water-quality data only			
OK7	DRY	DRY			
OK8	DRY	DRY			
OK9	*	*			
ОК10	*	*			
OK11	*	*		* (Syncarida)	
OK12	DRY	Water-quality data only			
OK14	*	*			
OK15	*	*		*(Copepoda)	
OK17	*	*			
ОК18	*	*		*(Syncarida, Copepoda)	
OK19	DRY	DRY			
ОК20	Water-quality data only	Water-quality data only			
ОК22	Water-quality data only	Water-quality data only			
TOTAL	9	9	0 (0%) ¹	3 (33%) ¹	

Table 3-1Bores Sampled and Stygofauna Present in the Study Area (marked with *).

¹Percentage of Stygofauna bores sampled in which stygofauna were sampled.

3.2 TAXONOMY

Three taxa from two Classes and three Orders were recorded during the survey (Table 3-2), none of which could be identified to species or genus level. A description of these taxa is provided in the following sections.

3.2.1 Class Malacostraca: Superorder Syncarida

Two specimens of a new species of syncarid from the Family Bathynellidae were recorded from the bores OK11 and OK18; these included one adult and one juvenile. This species is unknown to the experts at the University of Western Australia (B. Knott, 2006, pers comm.) and thus its conservation significance is currently unknown.

3.2.2 Class Maxillopoda: Subclass Copepoda: Order Calanoida

A single male individual of an unknown species of a calanoid copepod was collected in bore OK15. The specimen was partially damaged, which prevented its further identification to family, genus and species level (D. Tang, 2006, pers comm.). As such, the conservation significance of this species cannot be determined unless additional specimens are collected.

3.2.3 Class Maxillopoda: Subclass Copepoda: Order Harpacticoida

A single juvenile individual of an unknown species of a harpacticoid copepod was collected in bore OK18. Identification to family, genus and species level was not possible due to the specimen's juvenile status (D. Tang, 2006, pers comm.). As such, the conservation significance of this species cannot be determined unless additional specimens are collected.

ТАХА									OK 15		OK 18
Class	Sub class	Super order	Order	Family	Genus Species	P1	P2	P1	P2	P1	P2
MALACOSTRACA	Eumalacostraca	Syncarida	Bathynellacea	Bathynellidae	Unidentified Genus	-	*	-	-	-	*
MAXILLOPODA	Copepoda	Gymnoplea	Calanoida	Unidentified Family	unknown	-	-	-	*	-	-
MAXILLOPODA	Copepoda	-	Harpaciticoida	Unidentified Family	unknown	-	-	-	-	-	*

Table 3-2Summary of Phase 1 and Phase 2 Stygofauna Findings

3.3 PHYSIO-CHEMICAL AND NUTRIENT RESULTS

Six physico-chemical parameters (temperature, pH, conductivity, total dissolved solids, oxidation reduction potential and dissolved oxygen) were measured in the field from water sampled from 14 bores, of the 17 bores that were attempted to be sampled (see Table 3.1) The results of the field water sampling are presented in Table 3.3.

In addition, seven physico-chemical parameters (conductivity, total suspended solids, total dissolved solids, turbidity, true colour, alkalinity and acidity) and four nutrient parameters (Nitrate NO_3 , Nitrate NO_2 , Phosphorus PO_4 -P and Phosphorus, P) were subsequently measured in the NATA Accredited SGS laboratories in Kewdale (See Table 3.4 and Appendix A2).

The average water temperature recorded in the bores during the survey was 23.2°C in Phase 1 and 25.2°C in Phase 2. Conductivity was measured at an average of 2747 μ S in Phase 1, and 3023 μ S in Phase 2, with OK10 having the lowest values and OK12 the highest. The mean pH was 6.8 and 7.1 for Phase 1 and Phase 2, respectively. TDS showed consistent values between the field and the lab, with the lowest peak at OK10 and the highest at OK12. The values for TSS were relatively stable, with peaks at OK2, OK5, OK9 and OK22. Both the Nitrite and phosphorous levels were consistent between phases, with peaks measured as OK10, OK12, OK18 and OK22.

Conductivity, Temperature, pH and TDS results did not vary greatly between field and lab data, or between results collected by *ecologia* in 2006 and Rockwater in 1999 (See Appendix A1).

Bores OK7, OK8, OK12 and OK19 were dry during one or both phases of the survey and therefore no water quality parameters were measured.

BORE	ОК	1 A	OK2		OK4		OK5		ОК7	
Phase Number	1	2	1	2	1	2	1	2	1	2
Depth to G. Water [m]	32.92	32.85	42.84	45.69	52.8	52.65	62.19	63.28	DRY	DRY
Total Bore Depth [m]	42.3	42.28	56.23	56.22	61.63	61.62	71.4	71.4	19.71	19.7
Temperature [°C]	25.1	25.7	24.9	26.8	23.2	25.2	23.5	27	N/A	N/A
рН	7.08	7.36	6.72	7.25	6.73	7.42	6.9	7.23	N/A	N/A
Conductivity [µS]	4080	4300	4140	4140	4310	4260	4420	4210	N/A	N/A
TDS [ppK]	N/A*	2.74	N/A*	2.65	N/A*	2.74	N/A*	2.7	N/A	N/A
ORP [mV]	126	116	55	101	136	72	119	120	N/A	N/A
DO [ppm]	2.66	2.42	5.61	4.33	6.53	5.39	5.4	6.02	N/A	N/A

Table 3.3	Field Data for Bores Sampled During the Phase 1 (August 2006) and Phase 2 (October - November 2006) Surveys.

BORE	0	K8	ОК9		OK10		OK11		OK12	
Phase Number	1	2	1	2	1	2	1	2	1	2
Depth to G. Water [m]	DRY	DRY	47.35	47.32	14.58	14.46	27.64	27.55	DRY	29.32
Total Bore Depth [m]	37.5	37.49	53.86	53.85	22.71	22.7	32.85	32.85	30.58	30.58
Temperature [°C]	N/A	N/A	22.4	24	20.7	22.3	23.5	23.6	N/A	26.9
рН	N/A	N/A	7.1	7.66	6.22	6.31	6.93	7.55	N/A	7.34
Conductivity [µS]	N/A	N/A	3160	2300	754	760	1544	994	N/A	4920
TDS [ppK]	N/A	N/A	N/A*	1.44	N/A*	0.457	N/A*	0.569	N/A	3.17
ORP [mV]	N/A	N/A	127	125	154	181	101	134	N/A	111
DO [ppm]	N/A	N/A	5.01	5.7	3.7	1	6.45	5.57	N/A	3.7

OPR Oakajee Terrestrial Port Development

Oakajee Stygofauna Assessment

BORE	OK14		OK15		OK17		OK18		ОК19	
Phase Number	1	2	1	2	1	2	1	2	1	2
Depth to G. Water [m]	31.14	31.1	10.59	10.53	51.71	51.64	48.48	47.32	DRY	DRY
Total Bore Depth [m]	35.62	35.61	26.1	26.09	56.5	56.49	51.04	51.04	35.6	35.6
Temperature [°C]	22	24	21.9	23.4	25.9	27.7	24.2	27.3	N/A	N/A
рН	7.37	7.03	6.4	6.34	6.86	7.3	6.93	7.33	N/A	N/A
Conductivity [µS]	1075	1050	2040	2112	2040	2030	2740	3250	N/A	N/A
TDS [ppK]	N/A*	0.634	N/A*	1.315	N/A*	1.27	N/A*	2.04	N/A	N/A
ORP [mV]	106	111	138	121	130	109	119	110	N/A	N/A
DO [ppm]	7.35	7.68	4.8	5.3	5.8	6.33	1.79	3.12	N/A	N/A

BORE	ОК	20	ОК22			
Phase Number	1	2	1	2		
Depth to G. Water [m]	37.79	37.77	28.58	28.66		
Total Bore Depth [m]	44	44	34.01	34		
Temperature [°C]	22.6	N/A**	21.8	23.9		
рН	7.2	N/A**	7.163	7.11		
Conductivity [µS]	2690	N/A**	2720	3010		
TDS [ppK]	N/A*	N/A**	N/A*	1.9		
ORP [mV]	115	N/A**	98	1.21		
DO [ppm]	6.5	N/A**	1.82	1.46		

* TDS meter not available

** Unable to retrieve bore water for measurements due to excess sediment suspended in the water column

BORE	OK1a		OK2		OK4		OK5		ОК9	
Phase Number	1	2	1	2	1	2	1	2	1	2
Conductivity @25°C [µS/cm]	4100	4300	4200	4200	4400	4400	4800	4300	3200	2400
Total Suspended Solids @103°C [mg/L]	62	69	2000	260	8	80	980	2600	1600	590
Total Dissolved Solids @ 180°C [mg/L]	2300	2400	2300	2200	2500	2300	2700	2400	1800	1400
Turbidity [NTU]	20	60	7000	220	6	50	600	300	700	150
True Colour [PCU]	<5	<5	5	<5	<5	<5	<5	<5	<5	<5
Total Alkalinity as CaCO3 [mg/L]	430	450	430	340	280	280	320	400	360	250
Acidity as CaCO3 (pH=8.3) [mg/L]	33	18	34	16	37	10	37	20	21	9
Nitrate, NO3 [mg/L]	29	140	6.2	20	4	17	13	64	24	120
Nitrite, NO2 [mg/L]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ortho Phosphorus, PO ₄ -P [mg/L]	0.049	0.036	0.048	0.009	0.007	0.01	0.018	0.01	0.008	0.008
Total Persulphate Phosphorus, P [mg/L]	0.08	0.08	0.05	0.34	<0.01	0.014	0.02	0.022	0.01	0.077

Table 3.4Laboratory Data for Bores Sampled During the Phase 1 (August 2006) and Phase 2 (October - November 2006) Surveys.

BORE	OK10		OK11		OK12		OK14		OK15	
Phase Number	1	2	1	2	1	2	1	2	1	2
Conductivity @25°C [µS/cm]	720	730	1500	1500	-	5000	1200	1200	2000	2100
Total Suspended Solids @103°C [mg/L]	100	120	6	<5	-	800	100	25	8	37
Total Dissolved Solids @ 180°C [mg/L]	470	460	870	830	-	2800	710	740	1100	1200
Turbidity [NTU]	70	50	1	7	-	120	8	25	3	20
True Colour [PCU]	5	<5	<5	<5	-	<5	<5	<5	<5	<5
Total Alkalinity as CaCO3 [mg/L]	30	64	210	210	-	340	180	180	31	36

OPR Oakajee Terrestrial Port Development

Oakajee Stygofauna Assessment

BORE	ОК10		OK11		OK12		ОК14		OK15	
Phase Number	1	2	1	2	1	2	1	2	1	2
Acidity as CaCO3 (pH=8.3) [mg/L]	14	48	13	12	-	9	9	8	8	7
Nitrate, NO3 [mg/L]	9.1	0.78	13	58	-	49	19	90	17	73
Nitrite, NO2 [mg/L]	<0.05	<0.05	<0.05	<0.05	-	<0.05	0.08	<0.05	<0.05	<0.05
Ortho Phosphorus, PO ₄ -P [mg/L]	0.1	0.34	0.012	0.022	-	0.051	0.004	0.01	0.021	0.009
Total Persulphate Phosphorus, P [mg/L]	0.1	1.5	0.04	<0.01	-	1.8	<0.01	0.085	0.04	0.031

BORE	OK17		OK18		ОК2	0	OK22	
Phase Number	1	2	1	2	1	2	1	2
Conductivity @25°C [µS/cm]	2000	2000	2800	3700	2700	-	3100	3000
Total Suspended Solids @103°C [mg/L]	28	69	35	<5	85	-	180	1400
Total Dissolved Solids @ 180°C [mg/L]	1100	1100	1500	2000	1600	-	1700	1600
Turbidity [NTU]	20	1	10	300	30	-	15	300
True Colour [PCU]	<5	<5	<5	<5	<5	-	<5	<5
Total Alkalinity as CaCO3 [mg/L]	180	180	380	620	320	-	370	600
Acidity as CaCO3 (pH=8.3) [mg/L]	15	10	39	22	16	-	39	26
Nitrate, NO3 [mg/L]	15	68	17	110	27	-	9.9	49
Nitrite, NO2 [mg/L]	<0.05	<0.05	1	<0.05	<0.05	-	2.1	0.15
Ortho Phosphorus, PO ₄ -P [mg/L]	0.01	0.013	2.1	0.25	0.093	-	<0.003	0.011
Total Persulphate Phosphorus, P [mg/L]	0.03	<0.01	3	0.35	0.093	-	0.04	0.013

May 2010

4 DISCUSSION AND CONCULSIONS

Three species of stygofauna representing two classes and three orders were recorded – two syncarids, one calanoid copepod and one harpacticoid copepod. The syncarid specimens are new to science and have not been recorded elsewhere in Western Australia. In the case of the copepods, one specimen was damaged and the other was a juvenile, thus both could not be identified to species level. Given that the syncarid was a new species and that the Geraldton region has not been sampled extensively for stygofauna (in contrast to the Pilbara, for example) there is the potential that the copepod specimens may also be new to science.

The overall physico-chemical data gathered during both phases of sampling were conducive for a stygofauna habitat. With the current levels of knowledge, salinity is one of the most prescriptive parameters of stygofauna habitat. Conductivity and TDS are used as measures of salinity. Stygofauna is usually collected in groundwater with conductivity of less than 5700 μ S (10,000 mg/L) and all the bores samples had water with conductivity measuring less than 4800 μ S/cm. The TDS results of sampled bores remained within the parameters for fresh water and indicate that the salinity levels are suitable for stygofauna habitat.

Higher levels of nitrite and phosphorus found in OK10, OK12, OK18 and OK22 could be caused by agricultural land use, nevertheless they did not seem to affect stygofauna habitation (i.e. Copepoda and Syncarida were found in bore OK18).

Noting that the underlying aquifers seem to be unconfined and are probably hydraulically connected (Rockwater 2003). Given the extent of the habitat outside the study area (and consequently the proportion of stygofauna habitat potentially affected), it is considered likely that the species identified by this survey extend well beyond the study area and therefore no further investigations are required.

This page has been left blank intentionally

5 **REFERENCES**

- Cho, J.-L., Park, J.-G., and Humphreys, W. F. 2005. A new genus and six new species of the Parabathynellidae (Bathenellacea, Syncarida) from the Kimberley region, Western Australia. Journal of natural History. 39:2225-2255.
- Danielopol, D. L. and Stanford, J. A., eds. 1994. Groundwater Ecology. Academic Press., San Diego.
- Davies, J. and Associates. 1993. Oakajee hydrogeology report. Unpublished report to Landcorp.
- De Laurentiis, P., Pesce, G. L., and Humphreys, W. F. 2001. Copepods from ground waters of Western Australia, VI. Cyclopidae (Crustacea: Copepoda) from the Yilgarn Region and the Swan Coastal Plain. pp. 115-131 *in* Humphreys, W. F., and Harvey, M. S., eds. Subterranean Biology in Australia. Records of the Western Australian Museum, Supplement No. 64., Perth.
- Unpublished report prepared for URS Australia Pty Ltd. 2004. Preliminary Investigation of Stygofauna in the Blackwood Groundwater Area.
- Environmental Protection Authority. 2003. Guidance for the Assessment of Environmental Factors, Statement No. 54: Consideration of Subterranean Fauna in Groundwater and Caves during Environmental Impact Assessment in Western Australia. December 2003
- Environmental Protection Authority. 2007. Guidance for the Assessment of Environmental Factors, Statement No. 54a (Technical Appendix to Guidance Statement no. 54): Sampling Methods and Survey Considerations for Subterranean Fauna in Western Australia.
- Humphreys, W. F. 1993. Stygofauna in semi-arid tropical Western Australia: a Tethyan connection?. Mémoires de Biospéologie. 20:111 - 116.
- Humphreys, W. F. 2001. Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum, Supplement No. 64: Subterranean Biology in Australia 2000:63-83.
- Karanovic, T. 2004. Subterranean copepods (Crustacea: Copepoda) from arid Western Australia. Crustaceana Supplement 3. 3:1 - 366.
- Mamonier, P., Vervier, P., Gilbert, J., and Dole-Oliver, M. J. 1993. Biodiversity in Groundwaters. Tree. 8:392 395.
- Rockwater. 2000. Oakajee industrial park background groundwater and surface water monitoring results. Unpublished report to Landcorp.
- Rockwater. 2003. Oakajee Industrial Park Groundwater Monitoring results.
- Wilson, G. D. F. and Keable, S. J. 2002. New genera of Phreatoicidea (Crustacea: Isopoda) from Western Australia. Records of the Australian Museum. 54:41-70.

This page has been left blank intentionally

APPENDIX 1 GRAPHICAL REPRESENTATION OF ALL PHYSICO-CHEMICAL AND NUTRIENT PARAMETERS MEASURED BY ECOLOGIA AND ROCKWATER

This page has been left blank intentionally

Stygofauna prefer water with conductivity <5700µS/cm (W. Humphreys, WA Museum, 2006, pers. comm. and B. Knott, University of WA, 2006, pers. comm.) therefore the water in the Study Area is within the conductivity levels suitable for stygofauna

All the results are within the parameters for fresh water and are therefore suitable for stygofauna

This page has been left blank intentionally.

May 2010

