

MINISTER FOR THE ENVIRONMENT; LABOUR RELATIONS

000506

STATEMENT THAT A PROPOSAL MAY BE IMPLEMENTED (PURSUANT TO THE PROVISIONS OF THE ENVIRONMENTAL PROTECTION ACT 1986)

MURRIN MURRIN NICKEL-COBALT PROJECT STAGE 2 EXPANSION 60 KM EAST OF LEONORA

Proposal:

The Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining

and processing operation (Stage 1), 60 kilometres east of Leonora,

as documented in schedule 1 of this statement.

The Stage 2 expansion of the project includes the mining of additional ore; an expansion of the processing plant to process additional ore; and the development of additional infrastructure

associated with mining and processing of the ore.

Proponent:

Anaconda Operations Pty Ltd

Proponent Address:

Level 12, Quay Side, 2 Mill Street, PERTH WA 6000

Assessment Number: 1229

Report of the Environmental Protection Authority: Bulletin 931

The proposal to which the above report of the Environmental Protection Authority relates may be implemented subject to the following conditions and procedures:

1 Implementation

- 1-1 Subject to these conditions and procedures, the proponent shall implement the proposal as documented in schedule 1 of this statement.
- 1-2 Where the proponent seeks to change any aspect of the proposal as documented in schedule 1 of this statement in any way that the Minister for the Environment determines, on advice of the Environmental Protection Authority, is substantial, the proponent shall refer the matter to the Environmental Protection Authority.

Published on

3 1 MAY 1999

1-3 Where the proponent seeks to change any aspect of the proposal as documented inschedule 1 of this statement in any way that the Minister for the Environment determines, on advice of the Environmental Protection Authority, is not substantial, those changes may be effected.

2 Proponent Commitments

- 2-1 The proponent shall implement the consolidated environmental management commitments documented in schedule 2 of this statement.
- 2-2 The proponent shall implement subsequent environmental management commitments which the proponent makes as part of the fulfilment of conditions and procedures in this statement.

3 Borefield Development Plans

- 3-1 Prior to commencement of construction of each borefield, the proponent shall prepare a Borefield Development Plan to achieve the following objective:
 - to ensure that the beneficial uses (including ecosystem maintenance) of the groundwater are not adversely impacted by the operation of the proposal.

Each Plan shall be prepared to the requirements of the Environmental Protection Authority on advice of the Water and Rivers Commission and the Department of Environmental Protection, and shall address:

- 1 the design of and rate of abstraction from the borefield;
- 2 aquifer modelling and predicted response to abstraction over the proposed life of the borefield;
- 3 identification of beneficial uses (including ecosystem maintenance) of associated groundwater and surface water of the area;
- 4 potential impacts on beneficial uses (including ecosystem maintenance);
- 5 appropriate liaison with the local Aboriginal communities in order to meet the objectives of condition 6-1 in relation to the borefield in question;
- 6 monitoring and management of any impacts on beneficial uses, and monitoring to refine model predictions; and
- a description of the existing environment and predicted construction impacts (which will require fauna, flora, vegetation, archaeological, and ethnographic surveys) where this information has not already been provided to the Environmental Protection Authority.
- 3-2 The proponent shall implement each Borefield Development Plan required by condition 3-1 subject to any modifications under condition 3-3.

- 3-3 If in operation, any borefield developed pursuant to a plan under condition 3-1 has any impact on beneficial uses (including ecosystem maintenance) which is considered unacceptable by the Environmental Protection Authority on advice of the Water and Rivers Commission and the Department of Environmental Protection, the proponent shall modify the appropriate plan/s to the requirements of the Environmental Protection Authority on advice of the Water and Rivers Commission and the Department of Environmental Protection.
- 3-4 The proponent shall extract groundwater from all borefields at a total rate not exceeding 53 ML per day.
- 3-5 The proponent shall make all Borefield Development Plans required by condition 3-1 and as modified under condition 3-3 publicly available, to the requirements of the Environmental Protection Authority.
- 3-6 Prior to commissioning of the proposal, the proponent shall prepare a contingency plan to the requirements of the Environmental Protection Authority on advice of the Water and Rivers Commission and the Department of Environmental Protection outlining areas of additional prospective borefield development in the event that borefields meeting the requirements of condition 3-1 cannot sustain the proposal's water requirement.

The contingency plan shall also include a programme of investigation for these borefields.

4 Subterranean Fauna Management Plan (Calcrete Quarry Areas)

4-1 Prior to quarrying either calcrete deposit (Shadywell or Pipeline), the proponent shall develop a Subterranean Fauna Management Plan to the requirements of the Environmental Protection Authority on advice of the Department of Environmental Protection, the Department of Conservation and Land Management and the Western Australian Museum.

The objective of this Plan is:

• to conserve and protect subterranean fauna species in the calcrete quarry areas.

This Plan shall address:

- subterranean fauna surveys of the calcrete areas, and possibly outside these areas, to establish the conservation significance of any species within the calcrete quarry areas;
- 2 mapping of the local and regional distribution of species identified by the surveys; and
- measures to limit the impacts on any localised species until the known range of these species is extended by additional surveys of other calcrete areas of the region and there is no significant risk of any species of subterranean fauna becoming extinct as a result of quarrying;
- 4-2 The proponent shall implement the Subterranean Fauna Management Plan required by condition 4-1.
- 4-3 The proponent shall make the Subterranean Fauna Management Plan required by condition 4-1 publicly available, to the requirements of the Environmental Protection Authority.

5 Tailings Storage Facility Option (Central Thickened Discharge)

5-1 If the proponent adopts the "Central Thickened Discharge" option, prior to construction of the Tailings Storage Facility, the proponent shall provide further details and modelling of the facility, to the requirements of the Environmental Protection Authority on advice of the Department of Minerals and Energy, the Water and Rivers Commission and the Department of Environmental Protection.

The objectives of this requirement are:

- to protect beneficial uses (including ecosystem maintenance) of groundwater surrounding the facility;
- to protect vegetation surrounding the facility;
- to protect surface water quality in nearby creeks; and
- to manage implications for migratory birds and other fauna.

Details and modelling shall address the following:

- 1 the detailed design of the facility;
- 2 assessment of the predicted particle form and geotechnical characteristics of the tailings, including settling characteristics, and settled and compacted permeabilities;
- modelling of seepage from the facility and its affect on the local groundwater system throughout its life and for a number of decades afterwards; and
- 4 management of large rainfall events.
- 5-2 If the proponent adopts the "Central Thickened Discharge" option, the proponent shall construct and operate the facility in accordance with the details and modelling required by condition 5-1.

6 Community Liaison

6-1 Prior to commissioning the Stage 2 expansion, the proponent shall, in consultation with the current members of the Murrin Murrin Aboriginal Environmental Liaison Committee, formalize the role and functioning of the committee.

The objectives of this condition are to ensure that through the committee the local Aboriginal communities:

- are kept informed about the potential and actual environmental impacts of the Murrin Murrin Project;
- are able to make their concerns in regard to environmental impacts known to the proponent; and
- are able to have meaningful input into the proponent's management of environmental impacts.

6-2 Within six months following commissioning, the proponent shall report on how the objectives referred to in condition 6-1 are to be achieved through the Murrin Aboriginal Environmental Liaison Committee, to the requirements of the Environmental Protection Authority on advice of the Department of Environmental Protection.

7 Greenhouse Gas Emissions Management Plan

- 7-1 Prior to commissioning, the proponent shall prepare a Greenhouse Gas Emissions Management Plan:
 - to ensure that "greenhouse gas" emissions from the project are adequately addressed and best available efficient technologies are used in Western Australia to minimise Western Australia's "greenhouse gas" emissions; and
 - to mitigate "greenhouse gas" emissions in accordance with the Framework Convention on Climate Change 1992, and consistent with the National Greenhouse Strategy,

to the requirements of the Environmental Protection Authority on advice of the Department of Environmental Protection.

This Plan shall include:

- calculation of the "greenhouse gas" emissions associated with the proposal, as indicated in "Minimising Greenhouse Gas Emissions, Guidance for the Assessment of Environmental Factors, No. 12" published by the Environmental Protection Authority;
- 2 specific measures to minimise the "greenhouse gas" emissions associated with the proposal;
- 3 monitoring of "greenhouse gas" emissions;
- 4 estimation of the "greenhouse gas" efficiency of the project (per unit of product and/or other agreed performance indicators) and comparison with the efficiencies of other comparable projects producing a similar product; and
- an analysis of the extent to which the proposal meets the requirements of the National Strategy using a combination of:
 - "no regrets" measures;
 - "beyond no regrets" measures;
 - land use change or forestry offsets; and
 - international flexibility mechanisms.
- 7-2 The proponent shall implement the Greenhouse Gas Emissions Management Plan required by condition 7-1.
- 7-3 The proponent shall make the Greenhouse Gas Emissions Management Plan required by condition 7-1 publicly available, to the requirements of the Environmental Protection Authority.

8 Decommissioning Plan

8-1 Within five years following commissioning, or at such later time considered appropriate by the Minister for the Environment on advice of the Department of Environmental Protection, the proponent shall prepare a Decommissioning Plan to the requirements of the Environmental Protection Authority on advice of the Department of Environmental Protection, the Department of Minerals and Energy, the Water and Rivers Commission and the Department of Conservation and Land Management.

This Plan shall:

- describe the processes for decommissioning and rehabilitation of the project area;
- 2 provide for the long term management of ground and surface water systems affected by the tailings storage facility and evaporation pond;
- 3 provide for the development of a 'walk away' solution for the decommissioned mine pit, waste dumps, process plant, tailings dam, evaporation pond and all associated infrastructure;
- 4 identify all contaminated areas, including provision of evidence of notification to relevant statutory authorities; and
- 5 investigate and report on the potential for backfilling pits, as a means of rehabilitating pits for the remainder of the project life.

Note: A 'walk away' solution means that the site shall either no longer require management at the time the proponent ceases operations, or if further management is deemed necessary, the proponent shall make adequate provision so that the required management is undertaken with no liability to the State.

- 8-2 The proponent shall implement the Decommissioning Plan required by condition 8-1 until such time as the Minister for the Environment determines that decommissioning is complete.
- 8-3 The proponent shall make the Decommissioning Plan required by condition 8-1 publicly available, to the requirements of the Environmental Protection Authority.

9 Performance Review

- 9-1 Each six years following the commencement of construction, the proponent shall submit a Performance Review to the Department of Environmental Protection:
 - to document the outcomes, beneficial or otherwise;
 - to review the success of goals, objectives and targets; and
 - to evaluate the environmental performance over the six years;

relevant to the following:

environmental objectives reported on in Environmental Protection Authority Bulletin 931;

- proponent's consolidated environmental management commitments documented in schedule 2 of this statement and those arising from the fulfilment of conditions and procedures in this statement;
- 3 environmental management system environmental performance targets;
- 4 environmental management programs and plans; and/or
- 5 environmental performance indicators;

to the requirements of the Environmental Protection Authority on advice of the Department of Environmental Protection.

Note: The Environmental Protection Authority may recommend changes and actions to the Minister for the Environment following consideration of the Performance Review.

10 Proponent

- 10-1 The proponent for the time being nominated by the Minister for the Environment under section 38(6) or (7) of the Environmental Protection Act 1986 is responsible for the implementation of the proposal until such time as the Minister for the Environment has exercised the Minister's power under section 38(7) of the Act to revoke the nomination of that proponent and nominate another person in respect of the proposal.
- 10-2 Any request for the exercise of that power of the Minister referred to in condition 10-1 shall be accompanied by a copy of this statement endorsed with an undertaking by the proposed replacement proponent to carry out the proposal in accordance with the conditions and procedures set out in the statement.
- 10-3 The proponent shall notify the Department of Environmental Protection of any change of proponent contact name and address within 30 days of such change.

11 Commencement

- 11-1 The proponent shall provide evidence to the Minister for the Environment within five years of the date of this statement that the proposal has been substantially commenced.
- 11-2 Where the proposal has not been substantially commenced within five years of the date of this statement, the approval to implement the proposal as granted in this statement shall lapse and be void. The Minister for the Environment will determine any question as to whether the proposal has been substantially commenced.
- 11-3 The proponent shall make application to the Minister for the Environment for any extension of approval for the substantial commencement of the proposal beyond five years from the date of this statement at least six months prior to the expiration of the five year period referred to in conditions 11-1 and 11-2.
- 11-4 Where the proponent demonstrates to the requirements of the Minister for the Environment on advice of the Environmental Protection Authority that the environmental parameters of the proposal have not changed significantly, then the Minister may grant an extension not exceeding five years for the substantial commencement of the proposal.

12 Compliance Auditing

- 12-1 The proponent shall submit periodic Performance and Compliance Reports, in accordance with an audit program prepared in consultation between the proponent and the Department of Environmental Protection.
- 12-2 Unless otherwise specified, the Chief Executive Officer of the Department of Environmental Protection is responsible for assessing compliance with the conditions, procedures and commitments contained in this statement and for issuing formal written advice that the requirements have been met.
- 12-3 Where compliance with any condition, procedure or commitment is in dispute, the matter will be determined by the Minister for the Environment.

Note

- The proponent is required to apply for a Works Approval and Licence for this project under the provisions of Part V of the Environmental Protection Act.
- Nickel-Cobalt ore mining and processing at Murrin Murrin for the Stage 1 project has already been approved (Statement Nos 418, 444, and 445).

CHERYL EDWARDES (Mrs) MLA MINISTER FOR THE ENVIRONMENT

3 1 MAY 1999

The Proposal (1229)

The Murrin Murrin Nickel-Cobalt Stage 2 expansion is a proposal to increase the processing and production of the existing Murrin Murrin Nickel-Cobalt project (Stage 1) to approximately 250% of its current level.

The existing Murrin Murrin Nickel-Cobalt project, located 60 km east of Leonora (Figure 1), has environmental approval to mine and process 4 Mtpa (million tonnes per annum) of ore, producing approximately 45 000 tpa of nickel, 3 000 tpa of cobalt, and 145 000 tpa of ammonium sulphate.

The expansion will involve mining the Murrin Murrin East ore bodies located 45 km southeast of the current project area, increasing the rate of mining of the Murrin Murrin North and South ore bodies, transporting the ore to the existing Murrin Murrin processing plant, and processing the ore within an expanded plant. The expanded project will also require the development of additional borefields, further calcrete quarry capacity and extended transport infrastructure (see Figure 2).

The Murrin Murrin Expansion Project will affect the Stage 1 Project as follows:

- increase in the mining rate and the development of new orebodies at the Murrin Murrin North and South Project Areas;
- expansion of the Stage 1 processing plan to process an additional 6 Mtpa of ore (giving a total throughput of 10 Mtpa);
- option to produce ammonia on-site rather than transport it from Kwinana;
- option to produce a zinc byproduct;
- additional tailings storage facilities;
- additional area for evaporation ponds; and
- option to develop rail infrastructure in the area to rail goods, products, and ore to and from the processing plant rather than the current road transport.

In addition to these effects, the following components will be added to the Stage 1 Project as part of the Stage 2 expansion:

- mining of the Murrin Murrin East Orebodies, located approximately 45 km to the southeast of the Murrin Murrin Plant Site and adjacent to the western edge of Lake Carey;
- a Run Of Mine (ROM) stockpile area at the Murrin Murrin East Project Area;
- crushing and blending of ore at the Murrin Murrin East Project Area;
- either a conveyor, haul road or rail line to transport the ore from the Murrin Murrin East ROM stockpile and mining areas to the existing Murrin Murrin Processing Plant;
- the development of new calcrete quarries located initially 5 km west of the decommissioned Windarra mine site and extending northwards;
- transportation of the calcrete by road, rail or slurry pipeline to the Plant Site;
- discharge water from pit dewatering operations to the starter pits at Murrin Murrin East and/or use for dust suppression;
- development of additional borefields (Sullivan, Station, Granite, Charcoal, Hamilton, and Grey Mare Borefields); and
- establishment of infrastructure facilities at Murrin Murrin East to support construction, operation and mining activities.

A simplified process flow diagram for the Stage 2 expansion is provided in Figure 3.

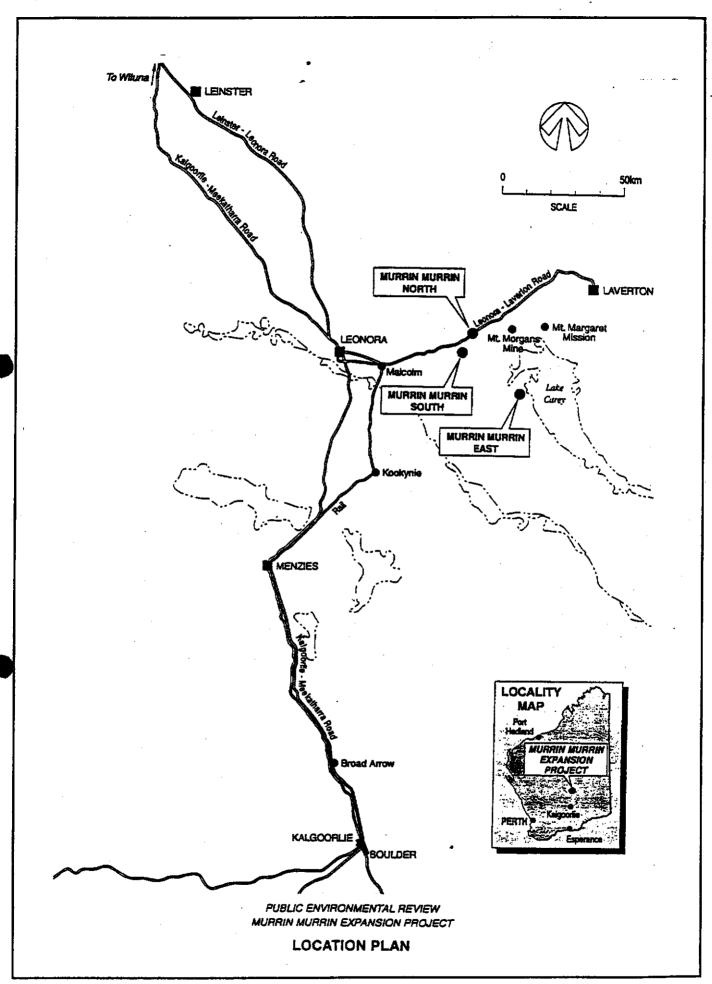


Figure 1. Location Plan (Source: Dames & Moore, 1998).

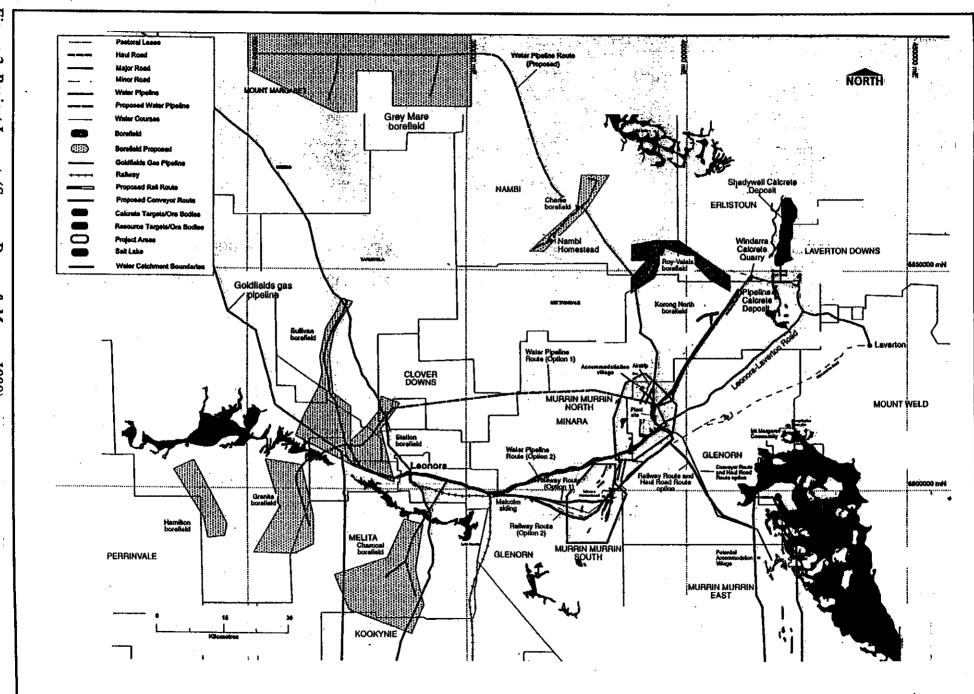


Figure 2. Project Layout (Source: Dames & Moore, 1998).

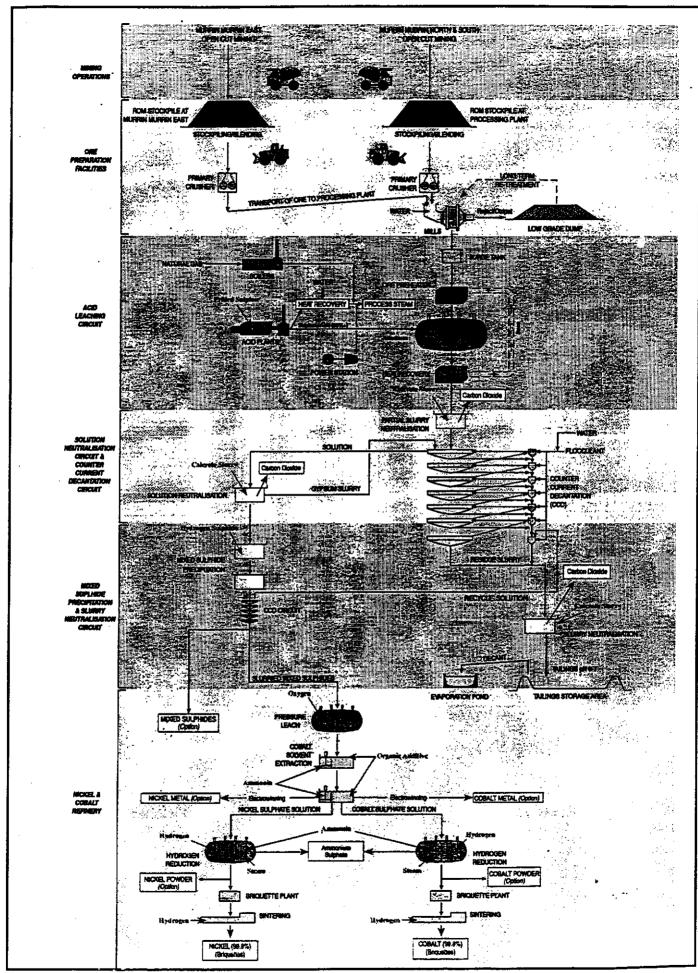


Figure 3. Process Flow Diagram (Source: Dames & Moore, 1998).

Key Characteristics Table (1229)

	MM Stage 1 Project			Project
	Design	Maximum	Design	Maximum
f 18 # Th14 (T 3241)	20	Capacity	20	Capacity
Life of Project(Indicative)	~30	years	~30	years
Inputs	4.0	4.5	10	1.1
Nickel Cobalt Ore (Mtpa)	4.0	4.5	10	11
Calcrete ¹ (Mtpa)	1.3	1.5	3.9	4.3
Elemental Sulphur (Mtpa)	0.54	0.62	1.4	1.9^{2}
Process Water (ML/d)	35	40	Up to 88	Up to 973
Natural Gas (TJpd)	8	25	⁻ 40	¯ 9 0 .
with Ammonia Plant in Expanded Project)				
Outputs4				
Products				
Nickel Metal Briquettes (tpa)	45,500	50.000	115,000	126,500
Cobalt Metal Briquettes (tpa)	3,000	3,800	11,000	12,000
Cobalt Powder (tpa)	3,000	3,800	11,000	12,000
	3,000	3,800	11,000	12,000
Cobalt Cathode (if electrowinning is used)	3,000	3,000	11,000	12,000
(tpa)	2.222	0.000	22.000	***
Cobalt Sulphate Crystals (tpa)	8,200	8,200	22,000	24,000
Mixed Nickel Cobalt Sulphide Powder (tpa)	29,000	100,000	250,000	275,000
Nickel Powder (tpa)	20,000	20,000	115,000	126,500
Nickel Cathode (if electrowinning is used)	0	0	115,000	126,500
(tpa)	-	•	,	,
Ammonium Sulphate Crystals (tpa)	145,000	160,000	400,000	440,000
	145,000	100,000	400,000	440,000
Wastes and Emissions	4.0		12.2	14.5
Tailings Solids (Mtpa) (including gypsum)	4.8	5.4	13.3	14.5
Water from Dewatering Operations (kL/d)			Up to 500	Up to 500
Sulphur Dioxide ⁵ (g/s)	189	ND	329	ND
Oxides of Nitrogen ⁵ (g/s)	20.0	ND	27.3	ND
Carbon dioxide (Mtpa)	0.38	ND	1.14	ND
<u> </u>	ıt Murrin Murrin E	ast (km²)		25
Waste Dumps - Indicative Characteristics Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a				25 15 20m
Area disturbed by waste dumps and orestockpiles a				25 15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a	t Murrin Murrin No	orth and South (km²)		15
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²)	t Murrin Murrin No	orth and South (km²)	Up to 23	15
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In	t Murrin Murrin No	orth and South (km²)	Up to 23 Up to 12	15
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12	15
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to:	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: • Comply wi	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines;	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfa	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfisaline liquors;	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfs saline liquors; Prevent the wa	15 20m
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfa saline liquors; Prevent the wa the facility fro	th the DM ace breakout and ther table outside m rising to a lev
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfa saline liquors; Prevent the wa the facility fro shallower tha	th the DM ace breakout and atter table outside an rising to a leven a 8m below to
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfasaline liquors; Prevent the wa the facility fro shallower tha ground surfac	th the DM ace breakout and atter table outside on fising to a leven 18 m below the at a distant
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfasaline liquors; Prevent the wa the facility fro shallower tha ground surfac	th the DM ace breakout and atter table outside on 18m below the at a distant
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfasaline liquors; Prevent the wa the facility fro shallower tha ground surfac	th the DM ace breakout and atter table outside m rising to a lev n 8 m below the at a distant 50m from the T.
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfisaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2	th the DM ace breakout and atter table outside m rising to a lev m 8m below the at a distant 50m from the T
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²) Groundwater criteria	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfisaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2	th the DM ace breakout and ter table outside m rising to a leven 8m below to at a distant 50m from the Ton ponds.
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²) Groundwater criteria Pits - Indicative Characteristics Area to be disturbed at Murrin Murrin East (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfisaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2	th the DM ace breakout and ter table outside on 8m below the at a distant 50m from the Ton ponds.
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²) Groundwater criteria Pits - Indicative Characteristics Area to be disturbed at Murrin Murrin East (km²) Area to be disturbed at Murrin Murrin North and St	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfasaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2 and evaporation	th the DM ace breakout and atter table outside om rising to a levn 8m below to at a distant 50m from the Ton ponds.
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Tailing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²) Groundwater criteria Pits - Indicative Characteristics Area to be disturbed at Murrin Murrin East (km²)	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfisaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2	th the DM ace breakout and atter table outside on rising to a leve at a distant 50m from the Ton ponds.
Area disturbed by waste dumps and orestockpiles a Area disturbed by waste dumps and orestockpiles a Height of waste dumps Failing Storage Facility and Evaporation Ponds – In Area of disturbance TSF (km²) Area of Disturbance Evaporation Ponds (km²) Groundwater criteria Pits - Indicative Characteristics Area to be disturbed at Murrin Murrin East (km²) Area to be disturbed at Murrin Murrin North and St	t Murrin Murrin No	orth and South (km²)	Up to 12 Designed to: Comply wi Guidelines; Prevent surfasaline liquors; Prevent the wa the facility fro shallower tha ground surfac greater than 2 and evaporation	th the DM ace breakout and atter table outside om rising to a levn 8m below to at a distant 50m from the Ton ponds.

Figures presented in this table for waste dumps, pits, calcrete quarry and the TSF and evaporation ponds are indicative only and final figures will be determined during detailed engineering in consultation with the DME. Notes:

The quantity of calcrete required will vary as a function of its calcium carbonate content. A high calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralisation requirements. The estimated value of 3.9Mtpa is based on an average calcium carbonate content of 52%. 1

2 Maximum capacity is based on the option of two 4,400tpd sulphuric acid plants for the Expansion Project to enable supply to third party users.

Maximum capacity is based on the option of a 350,000tpa ammonia plant for the Expansion Project to enable supply

3 to third party users.

The product masses listed as the outputs represent the maximum production rates for each product in isolation from

other related products.

ND

Proponent's Consolidated Environmental Management Commitments

4 May 1999

MURRIN MURRIN NICKEL-COBALT PROJECT STAGE 2 EXPANSION 60 KM EAST OF LEONORA (1229)

ANACONDA OPERATIONS PTY LTD

Murrin Murrin Stage 2 Expansion (1229)

Summary of Proponent's Environmental Management Commitments

Issue	Objective	Commitment	To Whose Satisfaction	Status		
Previous Commitments Mad	Previous Commitments Made During the EIA Process					
Programme	To develop and implement an Environmental Management Programme to ensure sound environmental management of the Projects construction phase.	Commitment 1 Prior to commencement of the Project, the Proponent will prepare and implement an Environmental Management Programme for the construction phase, in consultation with the DEP, DME, CALM and other relevant agencies to meet the requirements of the EPA. Rirther, the Proponent will ensure that its contractors comply with the environmental management strategies and procedures described in the EMP.	Developed in consultation with the DEP, DME, CALM and other relevant agencies to meet the requirements of the EPA.	Complete for currently MM Stage 1 Project. The EMP will be updated as required for the Expansion Project.		
Environmental Management System	To develop and implement an Environmental Management System to ensure sound environmental management of the Project's operations and decommissioning phase.	Commitment 2 The Proponent will develop and implement an Environmental Management System for the operation of the Project prior to the start of operations. This EMS will be developed in consultation with the DEP, DME and CALM, and to the satisfaction of the EPA. Further, the Proponent will ensure that its contractors comply with the environmental management strategies and procedures described in the EMS.	Developed in consultation with the DEP, DME and CALM to meet the requirements of the EPA	In progress and likely to be in place by November 1998.		
Protection of fibra and vegetation	To minimise disturbance of the general flora and vegetation of the Project Area.	Commitment 3 The Proponent will progressively rehabilitate disturbed areas to minimise disturbance of biological communities. The rehabilitation will be completed to the satisfaction of the EPA in accordance with the approved EMP and EMS.	EPA	Ongoing.		
Protection of significant flora	To minimise disturbance of known Hemigenia exilis populations within the Project Area, where possible.	Commitment 4 The Proponent will undertake the construction, operation and decommissioning of the Project in a manner that minimises disturbance to significant flora populations. Further the Proponent will require its contractors to comply with this commitment. This will be undertaken to the satisfaction of the EPA and CALM, in accordance with the approved EMP and EMS.	EPA, CALM	Management Plan for Hemigenia exilis approved by CALM. Ministerial Approval "to take" Hemigenia exilis at Murrin Murrin South obtained. Ongoing research being undertaken. Hemigenia exilis removed from the Declared Rare Fbra List and now categorised as Priority Four Species Commitment has been updated to reflect the new status of Hemigenia exilis. EMP to be updated for the Expansion Project.		

Issue	Objective	Commitment	To Whose Satisfaction	Status
Erosion control	To minimise the risk of erosion and sedimentation.	Commitment 5 The Proponent will minimise erosion by minimising the extent of land disturbance and progressively rehabilitating disturbed areas. This will be undertaken to the satisfaction of the EPA and DME in accordance with the approved EMP and EMS.	EPA, DME	Ongoing.
Potential water quality impacts due to surface rumoff	To minimise the off-site transport of sediments.	Commitment 6 The Proponent will minimise the off-site transport of sediments by minimising exposed surfaces, identifying and treating onsite areas prone to erosion and progressively rehabilitating disturbed areas. The Proponent will also undertake a water quality monitoring programme for Cement Creek and Katata Creek. These monitoring programmes will be developed and implemented to meet the requirements of the EPA. DME and WRC. If adverse impacts on water quality are observed through monitoring, the proponent will develop and implement management measures to rectify these impacts.	EPA, DME, Water & Rivers Commission	Monitoring programme for Cement Creek has been established Ongoing programme.
Dust control - construction phase	To control any dust generated as a result of construction phase activities.	Commitment 7 The Proponent will implement dust mitigation measures including containment and suppression during construction to the satisfaction of the EPA and DME.	EPA, DME	Ongoing.
Dust control – cperations phase	To minimise dust generation during the operations phase.	Commitment 8 The Proponent will minimise dust generation during operation of the facility by the following measures: regular cleaning of areas likely to accumulate dust; sealing of major roadways within the Plant Sie; and use of water sprays on mine areas, are and calcrete haulage routes, stockpiles and other Project Areas, as required. This programme will be completed to the satisfaction of the EPA and DME.	EPA, DME	Dust control measures incorporated into the Project design and implementation.
Greenhouse Gas Emissions	To comply with the State and Pederal Government Greenhouse Policies.	Commitment 9 The total carbon dioxide emission for the Project will be calculated by the Proponent on an armual basis and reported to the DEP. The Proponent will explore mechanisms to minimise greenhouse gas emissions on an ongoing basis. The Proponent will consider entering into the Federal Government's Greenhouse Challenge Programme.	EPA	Methods of minimising carbon dioxide emissions are being explored on an ongoing basis. The Proponent is currently having discussions with the Federal Government's Greenhouse Challenge Office.

Issue	Objective	Commitment	To Whose Satisfaction	Status
Noise	To minimise the impact of noise generated by the construction and operation of the Project.	Commitment 10 The Proponent will ensure that noise from the Project will comply with the requirements of the State's noise regulations. If noise levels attributable to the Project exceed EPA criteria, the Proponent will take measures to reduce the impact.	EPA	No unacceptable noise impacts observed to date.
Overburden waste dumps	To ensure that the final overburden dumps are stable and support a self-sustaining ecosystem.	Commitment 11 The Proponent will design and operate the overburden waste dumps such that they are stable and resistant to erosion, to the satisfaction of the EPA and DME.	EPA, DME	DME approval of waste dump design via approved NOL
Tailings Storage Facility	To design, construct and operate an environmentally sound TSF.	Commitment 12 The Proponent will design and operate the tailings storage facility in accordance with the requirements of the EPA and DME to ensure that the tailings storage facility and evaporation ponds do not result in unacceptable impacts to the existing groundwater regime.	EPA, DME	Technical details on the design of TSF and evaporation ponds approved by the DMF, DEP and WRC for the MM Stage I Project. The design of these facilities will be modified due to the Expansion Project. The modified design will be submitted to DME, DEP and WRC for approval.
Design of the solid and liquid waste disposal facilities.	To ensure the integrity of the solid and liquid waste disposal facilities.	Commitment 13 Prior to the construction and operation of the tailings dam and the evaporation pond, the Proponent will undertake the following: A more detailed assessment of tailings solids and liquids geochemistry, including predicted compositions relevant to environmental guidelines and standards. This assessment will focus on Total Dissolved Solids, major ions and metals (via an elemental analysis). An assessment of the predicted particle form and geotechnical characteristics of the tailings, including settling characteristics, and settled and compacted permeabilities. A more detailed evaluation of potential alternative tailings storage options.	EPA, DME, WRC	Considerable amount of work was undertaken during the detailed design of the tailings dams and evaporation ponds for the MMStage 1 Project. This work addressed all of the issues covered by this commitment and has been reviewed and approved by the DME, DEP and WRC. This work is being reviewed and updated to incorporate the Expansion Project.

Issue	Objective	Commitment	To Whose Satisfaction	Status
Groundwater monitoring	To monitor the impacts of the construction and operation of the waste disposal facilities on local groundwater resources.	Commitment 14 The Proponent will design and instal a groundwater monitoring programme up- and down-gradient of the tailings dam and the evaporation pends prior to the construction of these facilities. The monitoring programme will be designed and operated to the satisfaction of the DME, DEP and WRC	EPA, DME, Water & Rivers Commission	Groundwater monitoring programmes have been established in the vicinity of the TSF, evaporation pends, borefields and calcrete quarry for the MM Stage I Project. These, programmes have been reviewed and approved by DME, DEP and WRC as part of the Project's EMP. Continuing compliance with the WRC Groundwater Well Licence Conditions. These programmes will be reviewed and updated to incorporate the
Pastoral activiées	To minimise the impact on existing pastoral activities.	Commitment 15 The Proponent will minimise the impact of the Project on pastomal activities and ensure that pastoral water supplies in the Project Area are maintained.	Pastoral lease holders, Water & Rivers Commission	Expansion Project. Ongoing.
Aborignal heritage	To avoid disturbance of Aboriginal sites.	Commitment 16 The Proponent will comply with the provisions of the Aboriginal Heritage Act 1972-1980.	Department of Aboriginal Affairs	Ongoing.
Operation Risks	To minimise the risks associated with plant operations.	Commitment 17 The following commitments are made relating to the plant operations: • hazardous chemicals and fuel storage areas will be bunded, and constructed in accordance with AS 1940 – 1933; • systems will be installed (either as procedures or by design) that would ensure shutdown following a release of either hydrogen or natural gas; • rigorous procedures will be in place to prevent air ingress into vessels containing either natural gas or hydrogen, at either plant start-up or shutdown; • the flare exhauts stack will be sited such that there is no potential for off-site thermal radiation effects and at a height sufficient to ensure adequate dispersion of toxic emissions; and • a hazard and operability study (HAZOP) will be conducted during the detailed design of the plant processing facilities.	EPA and DME	The design of the MM Stage 1 plant has incorporated these safety features. Numerous hazard and operability studies have been conducted during the design and current commissioning. This work will be reviewed and updated to incorporate the Expansion Project. Ongoing review of safety.

Issue	Objective	Commitment	To Whose Satisfaction	Status
Fauna	To ensure that adequate information is available for the purposes of managing the Project, workforce education and workforce induction.	Commitment 18 The Proponent will undertake additional fauna studies (including subterranean fauna surveys) to ensure that adequate information is available for the purposes of managing the Project as well as educating the workforce. The scope of these studies will be determined prior to the commencement of the construction phase in consultation with the DEP, CALM and the WA Museum, and will be undertaken to meet the requirements of the EPA. Survey results will also be provided to Environment Australia.	EPA with advice from CALM	Studies of the approved MM Stage 1 Project Area have been completed and approved by CALM. Further studies of the areas to be affected by the Expansion Project have been completed. Surveys for subterranean fauna to be undertaken in November 1998. The survey results and any required management measures will be supplied to the DEP as soon as possible following the completion of the survey.
Atmospheric Emissions	To ensure that atmospheric emissions comply with specified criteria.	Commitment 19 The Proponent will specify emissions criteria in tender documents for the supply of equipment for the Plant. Compliance testing will be carried out by the Proponent during the commissioning of the Hant to confirm that the emissions from plant equipment are within the specified limits. This commitment will be implemented to meet the requirements of the EPA.	EPA	Emissions criteria have been specified in tender documents. Ongoing.
Solid and Liquid Waste Disposal Facilities	To ensure review of the operation of the TSF and evaporation ponds.	Commitment 20 The Proponent will prepare a report on the development and performance of the waste disposal facilities (i.e. TSF and evaporation ponds) after five years of operation.	ЕРА	Facilities are yet to be commissioned.
New Commitments				
Murrin Murrin Aboriginal Environmental Liaison Commitee	To ensure community concerns are known and that he community can assist with the development of suitable environmental management practices.	Commitment 21 The Murrin Murrin Aboriginal Environmental Liaison Committee will continue to meet at a frequency determined by the Committee until the Committee considers that it is no longer required.	EPA	New Commitment.
Significant Faura	To ensure the protection of significant fauna in the borefields.	Commitment 22 The Proponent will undertake the construction, operation and decommissioning of the Project in a manner that minimises disturbance to the Malleefowl nest in the Granite Borefield. This will be undertaken in consultation with CALM.	EPA, on advice from CALM	New Commitment.

Issue	Objective	Commitment	To Whose Satisfaction	Status
Vegetation	To minimise the impact of the borefield operation on the surrounding vegetation.	Commitment 23 The Proponent will conduct a vegetation monitoring programme for the additional borefields from which the water for the Expansion Project will be sourced as these borefields are developed. This will be undertaken to the satisfaction of the EPA, on advice from CALM, DEP and WRC.	EPA, on advice from DEP and CALM	New Commitment.
Groundwater	To minimise the impact of the borefield operation on other users in the region	Commitment 24 The Proponent will progressively extend the groundwater monitoring programme currently being implemented at the Roy Valais Borefield to include the Sullivan, Station, Charlie and Granite Borefields as they are developed. This will be undertaken in accordance with the WRC Groundwater Well Licence Conditions and to the satisfaction of the EPA on advice from WRC and DEP.	EPA	New Commitment.
Rehabilitation	Optimise rehabilitation of the TSF.	Commitment 25 The Proponent will set aside an area of tailings to use for rehabilitation rials, with the aim of testing methods of rehabilitating the tailings. These trials will be undertaken in consultation with DME, DEPand CALMand will commence following the selection of the final tailings storage method and the production of sufficient tailings for the trails.	EPA, DME	New Commitment.
Lakes	To minimise impacts on lake systems.	Commitment 26 The Proponent will not discharge any solid or liquid waste from the Expansion projectinto Lake Carey or any other lake system in the area.	ЕРА	New Commitment
Lake Carey - fringing vegetation	To ensure that adequate information is available for the purposes of managing the Project.	Commitment 27 The Proponent will undertake further investigations to determine if Halosorcia "Angel Fish Island" ms occurs at any additional locations within the Murrin Murrin East project Area. These investigations may be undertaken in cooperation with other mining companies operation in the vicinity of Lake Carey.	EPA, on advice from DEP and CALM	New Commitment

Issue	Objective	Commitment	To Whose Satisfaction	Status
Vegetation	To minimise the impact of the borefield operation on the surrounding vegetation.	Prior to the borefields being developed, the Proponent will: review the vegetation mapping for the proposed borefield areas; identify significant vegetation communities which have the potential to be affected by groundwater drawdown; design and implement a vegetation monitoring programme for these communities; and develop contingency measures to minimise any impacts on these communities should the monitoring programme identify that the borefield operation is resulting in unacceptable impacts on these communities.		New Commitment
Groundwater	To maintain the Leonora town water supply.	Commitment 29 The Proponent will undertake further consultation with the Water Corporation prior to the development of the Station Creek Borefield regarding management of the potential impacts on Leonora town water supply. This consultation will be undertaken in conjunction with the WRC and the DEP, and agreement reached on the monitoring and mitigative actions to be undertaken to the satisfaction of the EPA, the WRC, and the Water Corporation.	EPA, WRC and the Water Corporation.	New Commitment

Abbreviations

EPA

DEP

WRC

Environmental Protection Authority
Department of Environmental Protection
Water & Rivers Commission
Department of Conservation & Land Management
Department of Minerals & Energy CALM

DME

Attachment 1 to Ministerial Statement 506 Section 45C change to proposal Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion

Mr Brian Bell for Minara Resources Ltd Suite 7, The Russell Centre 159 Adelaide Terrace EAST PERTH WA 6004

Dear Mr Bell

PROPOSED MODIFICATION TO PROPOSAL – MURRIN MURRIN NICKEL COBALT PROJECT – PIT 2/3 AS A TAILINGS STORAGE FACILITY (STATEMENT 506)

Under Section 45C of the *Environmental Protection Act 1986* I am able to approve changes to a proposal, without a revised proposal being submitted to the EPA, when it is considered that the changes will not have a significant adverse environmental impact.

I understand that the changes to the proposal requested, namely, the use of Pit2/3 for periodic tailings disposal, will not result in additional significant adverse impacts on the environment.

Approval is therefore granted under Section 45C of the *Environmental Protection Act* 1986 for the requested changes detailed in your letters. You are reminded that this approval relates to environmental requirements in Statement 506 and does not replace any responsibilities you may have for seeking approvals from other government agencies.

Yours sincerely

Signed by

Walter Cox CHAIRMAN

31 January 2005

Attachment 2 to Ministerial Statement 506 Section 45C change to proposal Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion

ATTACHMENT TO STATEMENT 506 – CHANGE TO DESCRIPTION OF PROPOSAL

MURIN MURRIN PROPOSED HEAP LEACH PROJECT

Proposal: Stage 2 Expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation (Stage 1), 60 kilometres east of Leonora as documented in schedule 1 of Statement 506.

The Stage 2 expansion of the project includes the mining of additional ore; an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Proponent: Minara Resources Ltd (formerly Anaconda Operations Pty Ltd)

Change: The construction and operation of a Heap Leach Facility located southeast of the existing Murrin Murrin processing plant (approximate coordinates GDA 391400mE, 6815800mE) as shown in Figure 1.

From:
Modified from the Key Characteristics Table (1229) Schedule 1 of Statement 506

ELEMENT	QUANTITIES/ DESCRIPTION		
	Design	Maximum Capacity	
Life of Project (Indicative)		~ 30 years	
Inputs			
Nickel Cobalt ore (Mtpa)	10	11	
Calcrete ¹ (Mtpa)	3.9	4.3	
Elemental Sulphur (Mtpa)	1.4	1.9 ²	
Process Water (ML/d)	Up to 88	Up to 97 ³	
Natural Gas (TJpd)	40	90	
Outputs ⁴			
Products			
Nickel Metal Briquettes (tpa)	115,000	126,500	
Cobalt Metal Briquettes (tpa)	11,000	12,000	
Cobalt Powder (tpa)	11,000	12,000	
Cobalt Cathode (if electrowinning is used) (tpa)	11,000	12,000	
Cobalt Sulphate Crystals (tpa)	22,000	24,000	
Mixed Nickel Cobalt Sulphide Powder (tpa)	250,000	275,000	
Nickel Powder (tpa)	115,000	126,500	
Nickel Cathode (if electrowinning is used) (tpa)	115,000	126,500	
Ammonia Sulphate Crystals (tpa)	400,000	440,000	
Wastes and Emissions			
Tailings Solids (Mtpa) (including gypsum)	13.3	14.5	
Waste from Dewatering Operations (kL/d)	Up to 500	Up to 500	
Sulphur Dioxide ⁵ (g/s)	329	ND	
Oxides of Nitrogen ⁵ (g/s)	27.3	ND	
Carbon dioxide (Mtpa) 1.1		ND	
Waste Dumps- Indicative Characteristics			
Area disturbed by waste dumps and ore stockpiles at M		25	
Area disturbed by waste dumps and ore stockpiles at M	<i>Aurrin</i>		
Murrin North and South (km²)		15	
Height of waste dumps		20m	

Tailings Storage Facility and Evaporation Ponds- Indicative Characteristics					
Area of disturbance TSF (km²)	Up to 23				
Area of Disturbance Evaporation Ponds (km²)	Up to 12				
Groundwater criteria	Designed to:				
	 Comply with the DoIR guidelines; 				
	Prevent surface breakout of saline liquors; and				
,	• Prevent the water table outside of the facility from rising to a level				
	shallower than 8m below the ground surface at a distance greater than				
	250m from the TSF and evaporation				
	ponds.				
Pits- Indicative Characteristics					
Area to be disturbed at Murrin Murrin East (km²)	17				
Area to be disturbed at Murrin Murrin North and South (km²)	8.5				
Depth of pits	Estimated max. depth of 50m				
Calcrete Quarry- Indicative Characteristics	Calcrete Quarry- Indicative Characteristics				
Area of disturbance (km²)	15				

Notes

Figures presented in this table for waste dumps, pits, calcrete quarry and the TSF and evaporation ponds are indicative only and final figures will be determined during detailed engineering in consultation with the DoIR.

- The quantity of calcrete required will vary as a function of its calcium carbonate content. A high calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neturalisation requirements. The estimated value of 3.9Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400tpd sulphuric acid plants for the Expansion Project to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000tpa ammonia plant for the Expansion project to enable supply to third party users
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

ND Not Defined

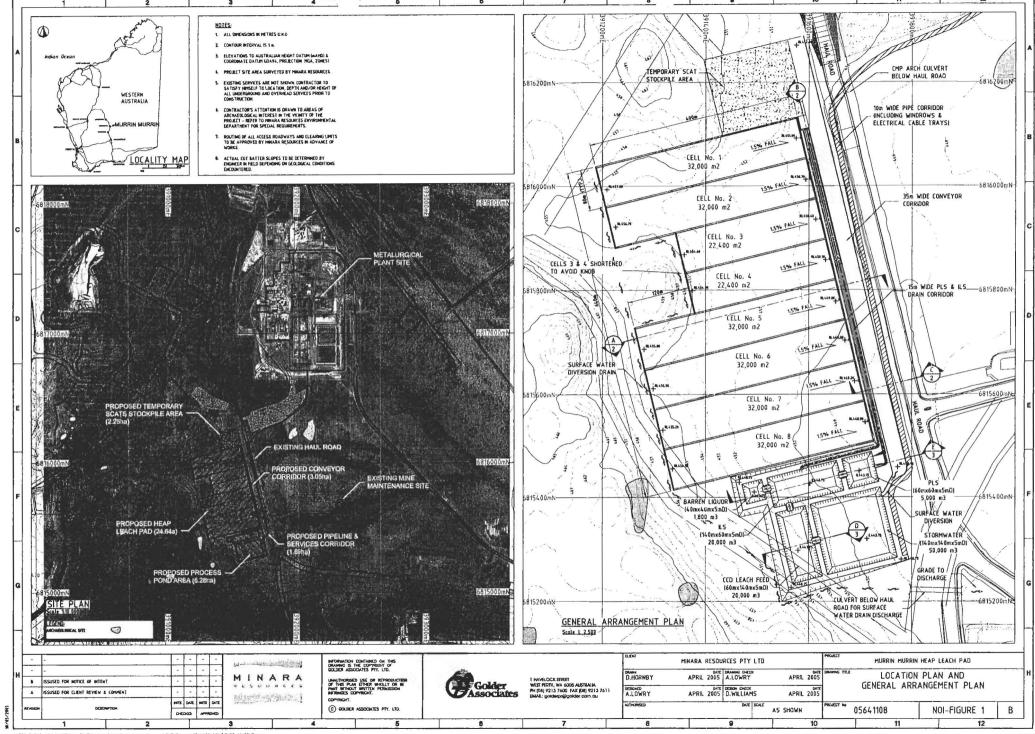
To:

ELEMENT	QUANTITIES	S/ DESCRIPTION
	Design	Maximum Capacity
Life of Project (Indicative)	~ 3	0 years
Inputs		
Nickel Cobalt ore (Mtpa)	10	11
Calcrete ¹ (Mtpa)	3.9	4.3
Elemental Sulphur (Mtpa)	1.4	1.92
Process Water (ML/d)	Up to 88	Up to 97 ³
Natural Gas (TJpd)	40	90
Outputs ⁴		
Products		
Nickel Metal Briquettes (tpa)	115,000	126,500
Cobalt Metal Briquettes (tpa)	11,000	12,000
Cobalt Powder (tpa)	11,000	12,000
Cobalt Cathode (if electrowinning is used)	11,000	12,000
(tpa)		
Cobalt Sulphate Crystals (tpa)	22,000	24,000
Mixed Nickel Cobalt Sulphide Powder (tpa)	250,000	275,000
Nickel Powder (tpa)	115,000	126,500
Nickel Cathode (if electrowinning is used)	115,000	126,500
(tpa)		
Ammonia Sulphate Crystals (tpa)	400,000	440,000
Wastes and Emissions		
Tailings Solids (Mtpa) (including gypsum)	13.3	14.5

Waste from Dewatering Operations (kL/d)	Up to 50	<u></u>	Up to 500
Sulphur Dioxide ⁵ (g/s)	329		ND
Oxides of Nitrogen 5 (g/s)	27.3		ND
Carbon dioxide (Mtpa)	1.14		ND
Waste Dumps- Indicative Characteristics	1.14		ND
Area disturbed by waste dumps and ore stock	niles at MME (km²)		25
Area disturbed by waste dumps and ore stock			23
Murrin North and South (km ²)	phos at Multin		15
Height of waste dumps			20m
Tailings Storage Facility and Evaporation	Ponds- Indicative Cha	ractoristics	2011
Area of disturbance TSF (km ²)	i onus- indicative Cha	il actel istics	Up to 23
Area of Disturbance Evaporation Ponds (km²)	Y		Up to 12
Groundwater criteria			Designed to:
Ground water officera		Comply y	with the DoIR guidelines;
			urface breakout of saline
		liquors; a	
			he water table outside of the
,		N.C. (More at the processor in	om rising to a level
•			r than 8m below the ground
			t a distance greater than
			m the TSF and evaporation
		ponds.	_
Pits- Indicative Characteristics			
Area to be disturbed at Murrin Murrin East (k	cm ²)		17
Area to be disturbed at Murrin Murrin North	and South (km²)		8.5
Depth of pits		Estim	ated max. depth of 50m
Calcrete Quarry- Indicative Characteristic	s		
Area of disturbance (km²)			15
Heap Leach Facility			
Total Area of disturbance (ha)		40	
Construction Period		6 months	
Project Life		30 year	rs
Characterisitcs			
Leach pad size and construction		24.64 ha	
	Compacted clay base w	with a single 1mm HDPE liner with coarse	
	material over liner		
Stockpiles	1 Mt scats (current stoc	knile) + 0.25	Mt /a

Irrigation system	HDPE pipes with dripp		
Leachate capture			ent collected into a main
	HDPE piping header ar		o either the PLS or ILS ponds
16			
Pregnant Liquor Transport to plant		E or rubber line	ed carbon steel pipe in HDPE
	lined corridor		
Barren liquor	Returned from plant in	HDPE or rubl	per lined carbon steel pipe in
*	HDPE lined corridor		FF
Acidification feed	Pumped from the existing acid storage facilities to the agglomerator		e facilities to the applomerator
			s recontrol to the apprometator
Storage	Five ponds, 6.28 ha in		Far Paris
			itermediate liquor solution,
	installed	i iiquor and st	orm water containment will be
Drainage		eam of the he	ap leach pad will redirect runoff
· · · · · · · · · · · · · · · · · ·			ert (under the haulage road) to
			eyor corridor will be collected
	in storm water pond		and the state of t
<u>Infrastructure</u>			
Rate of processing	0.5 Mtpa (Years 1, 2 &	3); then 0.25	Mtpa (i.e. rate of scat
Strategie de la faction de la	production)		

Haul roads and access	No change to existing roads	
Power requirements	500 kW produced from existing gas-fired power plant Overhead cabling to be located adjacent to the heap leach pad corridor	
Water requirements	No additional abstraction required	
Groundwater monitoring bores	New bores will be drilled on site to monitor groundwater quality near the HLF	
Modifications to process plant	None required	
Changes to hydrocarbon storage	None required	
Changes to personnel	Additional five	
Changes to camp facilities	None required	
Recovery	Overall Ni and Co recovery from heaps expected to be about 70%	
Waste Residue		
Volume	About 0.345 Mtpa (Years 1 & 2); then 0.1725 Mtpa (69% of scat volume)	
Rehabilitation	Heaps to be rehabilitated insitu	


Notes:

Figures presented in this table for waste dumps, pits, calcrete quarry and the TSF and evaporation ponds are indicative only and final figures will be determined during detailed engineering in consultation with the DoIR.

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. A high calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neturalisation requirements. The estimated value of 3.9Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400tpd sulphuric acid plants for the Expansion Project to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000tpa ammonia plant for the Expansion project to enable supply to third party users
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

ND Not defined

Approval Date: 8 Dec 2005

Attachment 3 to Statement 506

Change to Proposal

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion,

60 km east of Leonora

Proponent: Minara Resources Ltd

Change: Changes to Schedule 1, Key Characteristics Table relating to

the continued operation of the Heap Leach Facility allowing ore

processing to remain at 0.5 Mtpa for 'life of mine'

<u>Element</u>	Description of proposal	Description of approved	
		change to proposal	
Life of Project (Indicative)	~30 years	~30 years	
Inputs			
Nickel Cobalt Ore (Mtpa)	11	11	
Calcrete ¹ (Mtpa)	4.3	4.3	
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²	
Process Water (ML/d)	Up to 97 ³	Up to 97 ³	
Natural Gas (Tjpd)	90	90	
Outputs ⁴			
Nickel Metal Briquettes (tpa)	126,500		
Cobalt Metal Briquettes (tpa)	12,000		
Cobalt Powder (tpa)	12,000		
Cobalt Cathode (if electrowinning is used) (tpa)	12,000	714,500 tpa (Maximum	
Cobalt Sulphate Crystals (tpa)	24,000	Capacity of Nickel, Cobalt, and Mixed Products)	
Mixed Nickel Cobalt Sulphide Powder (tpa)	275,000	,	
Nickel Powder (tpa)	126,500		
Nickel Cathode (if electrowinning is used) (tpa)	126,500		
Ammonia Sulphate Crystals (tpa)	440,000	440,000	
Waste and Emissions			
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5	
Waste from Dewatering Operations (kL/d)	Up to 500	Up to 500	
Sulphur Dioxide (g/s)	329	329	
Oxides of Nitrogen (g/s)	27.3	27.3	
Carbon Dioxide (Mtpa)	1.14	1.14	

Element	Description of proposal	Description of approved	
Liement		change to proposal	
Waste Dumps – Indicative Cl	l haracteristics		
Area disturbed by waste	25	25	
dumps and ore stockpiles Murrin Murrin east (km²)			
Area disturbed by waste	15	15	
dumps and ore stockpiles at Murrin Murrin North and			
South (km ²)			
Height of Waste Dumps (m)	20	20	
Tailings Storage Facility and	Evaporation Ponds – Indicative	Characteristics	
Area of Disturbance TSF (km²)	Up to 23	Up to 23	
Area of Disturbance Evaporation Ponds (km²)	Up to 12	Up to 12	
Groundwater Criteria	Comply with DoIR guidelines	Comply with Department	
	Prevent surface breakout of saline liquors; and	of Mines and Petroleum guidelines	
	Prevent the water table	Prevent surface breakout	
	outside of the facility from	of saline liquors; and	
	rising to a level shallower than 8m below the ground surface	Prevent the water table outside of the facility from	
	at a distance greater than	rising to a level shallower	
	250m from the TSF and	than 8m below the ground	
	evaporation ponds.	surface at a distance greater than 250m from the TSF	
Pits – Indicative Characterist	tice	and evaporation ponds.	
	1	1.47	
Area to be disturbed at Murrin Murrin East (km²)	17	17	
Area to be disturbed at	8.5	8.5	
Murrin Murrin North and			
South (km²)	Fatimated may 50 m	Fatimated may 50 m	
Depth of pits	Estimated max. 50 m	Estimated max. 50 m	
	Calcrete Quarry – Indicative Characteristics		
Area of Disturbance (km²)	15	15	
Heap Leach Facility			
Total Area of Disturbance (ha)	40	40	
Construction Period	6 months	REMOVED AS NOT ENVIRONMENTALLY RELEVANT	
Project Life	30 years	REMOVED AS NOT	
		ENVIRONMENTALLY RELEVANT	

Element	Description of proposal	Description of approved change to proposal
Characteristics		
Leach Pad size and construction	24.64 ha Compacted clay base with a single 1 mm HDPE liner with coarse material over liner.	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Stockpiles	1 Mt scats (current stockpile) + 0.25 Mtpa	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Irrigation System	HDPE pipes with drippers	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Leachate capture	Herring bone HDPE piping arrangement collected into a main HDPE piping header and returned to either the PLS or ILS ponds via a 'w' drain arrangement	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Pregnant Liquor Transport to Plant	Pumped through HDPE or rubber lined carbon steel pipe in HDPE lined corridor	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Barren Liquor	Returned from plant in HDPE or rubber lined steel pipe in HDPE lined corridor	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Acidification Feed	Pumped from the existing acid storage facilities to the agglomerator	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Storage	Ponds for pregnant liquor solution, intermediate liquor solution, overflow from counter current decantation tank 1 (CCD1), barren liquor and storm water containment	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Drainage	A diversion drain upstream of the heap leach pad redirects runoff to a sediment trap and through a culvert (under the haulage road) to the south east. Runoff from the conveyor corridor will be collected in storm water pond.	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Infrastructure		
Rate of Processing	0.5 Mtpa (Years 1, 2 and 3); then 0.25 Mtpa (i.e. rate of scat production).	0.5 Mtpa
Haul Roads and Access	ND	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Power Requirements	500 kW produced from existing gas-fired power plant. Overhead cabling to be located adjacent to the heap leach pad corridor.	REMOVED AS NOT ENVIRONMENTALLY RELEVANT

Element	Description of proposal	Description of approved change to proposal
Water Requirements	No additional abstraction required	REMOVED AS COVERED UNDER THE RIGHTS IN WATER AND IRRGATION ACT 1914
Groundwater Monitoring Bores	New bores will be drilled on the site to monitor groundwater quality near the HLF	REMOVED AS COVERED UNDER PART V OF THE ENVIRONMENTAL PROTECTION ACT 1986
Modifications to Process Plant	ND	REMOVED AS COVERED UNDER PART V OF THE ENVIRONMENTAL PROTECTION ACT 1986
Changes to Hydrocarbon Storage	ND	REMOVED AS COVERED UNDER PART V OF THE ENVIRONMENTAL PROTECTION ACT 1986
Changes to Personnel	ND	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Changes to Camp Facilities	ND	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Recovery		
Percentage	Overall Ni and Co recovery from heaps expected to be about 70%	REMOVED AS NOT ENVIRONMENTALLY RELEVANT
Waste Residue		
Volume	About 0.345 Mtpa (Years 1 & 2); then 0.1725 Mtpa (69%) of scat volume	0.375 Mtpa
Rehabilitation	Heaps to be rehabilitated in situ	REMOVED AS COVERED UNDER PART V OF THE ENVIRONMENTAL PROTECTION ACT 1986

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.

- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.

 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.

 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

ND Not defined

Dr Paul Vogel CHAIRMAN **Environmental Protection Authority** under delegated authority

Approval date: 24 January 2012

Attachment 4 to Statement 506

Change to Proposal

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion,

60 km east of Leanora

Proponent: Minara Resources Ltd

Change: Changes to Schedule 1, Key Characteristics Table relating to

the clearing of an additional 300 ha of vegetation to allow for the development of additional Pits, Waste Dumps and Ore

Stockpiles.

Element	Description of proposal	Description of approved change to proposal
Life of Project (Indicative)	~30 years	~30 years
Inputs		
Nickel Cobalt Ore (Mtpa)	11	11
Calcrete ¹ (Mtpa)	4.3	4.3
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²
Process Water (ML/d)	Up to 97 ³	Up to 97 ³
Natural Gas (Tjpd)	90	90
Outputs ⁴		
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,500	714,500
Ammonia Sulphate Crystals (tpa)	440,000	440,000
Waste and Emissions		
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5
Waste from Dewatering Operations (kL/d)	Up to 500	Up to 500
Sulphur Dioxide (g/s)	329	329
Oxides of Nitrogen (g/s)	27.3	27.3
Carbon Dioxide (Mtpa)	1.14	1.14
Waste Dumps – Indicative Characterist	tics	
Area disturbed by waste dumps and ore stockpiles Murrin Murrin east (km²)	25	25
Area disturbed by waste dumps and ore stockpiles at Murrin Murrin North and South (km²)	15	Removed, incorporated into new consolidated element for Pits, Waste Dumps and Ore Stockpiles
Height of Waste Dumps (m)	20	20
Tailings Storage Facility and Evaporation Ponds – Indicative Characteristics		
Area of Disturbance TSF (km²)	Up to 23	Up to 23

Area of Disturbance Evaporation Ponds	Up to 12	Up to 12
(km²)	0 0 12	
<u>Element</u>	Description of proposal	Description of approved change to proposal
Groundwater Criteria	 Comply with DoIR guidelines Prevent surface breakout of saline liquors; and Prevent the water table outside of the facility from rising to a level shallower than 8m below the ground surface at a distance greater than 250m from the TSF and evaporation ponds. 	 Comply with Department of Mines and Petroleum guidelines Prevent surface breakout of saline liquors; and Prevent the water table outside of the facility from rising to a level shallower than 8m below the ground surface at a distance greater than 250m from the TSF and evaporation ponds.
Pits - Indicative Characteristics		
Area to be disturbed at Murrin Murrin East (km²)	17	17
Area to be disturbed at Murrin Murrin North and South (km²)	8.5	Removed, incorporated into new consolidated element for Pits, Waste Dumps and Ore Stockpiles
Depth of pits (m)	Estimated max. 50 m	Estimated max. 50 m
Pits, Waste Dumps and Ore Stockpiles		
Area to be disturbed at Murrin Murrin North and South (km²)	Not in original statement	26.5 – New element from consolidation of pit and waste dump elements relating to Murrin Murrin North and South
Calcrete Quarry – Indicative Character	istics	
Area of Disturbance (km²)	15	15
Heap Leach Facility		
Total Area of Disturbance (ha)	40	40
Infrastructure		
Rate of Processing (Mtpa)	0.5	0.5
Waste Residue		
Volume (Mtpa)	0.375	0.375
Notes:		

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

List of Figures:

Addition of Figure 5 - Approved additional Mine Pits, Waste Dumps and Ore Stockpile locations, including existing operation footprint.

Dr Paul VogelCHAIRMAN
Environmental Protection Authority
under delegated authority

Approval date: 27 March 2013

Figure 5 – Approved additional Mine Pits, Waste Dumps and Ore Stockpile locations, including existing operation footprint.

Attachment 5 to Ministerial Statement 506

Change to proposal under s45C of the Environmental Protection Act 1986

This Attachment replaces Schedule 1 and Attachments 1 to 4 of Ministerial Statement 506

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of

Leonora.

Proponent: Minara Resources Pty Ltd.

Changes:

Removal of Groundwater criteria from the Key Characteristics Table.

Table 1: Summary of the Proposal

Proposal Title	Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of Leonora.
Short Description	The proposal is for the Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation, 60 kilometres east of Leonora.
	The Stage 2 expansion includes the mining of additional ore, an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Table 2: Location and authorised extent of physical and operational elements

		•
Element	Description of authorised proposal	Description of approved change to proposal
Life of Project (Indicative)	~30 years	~30 years
Inputs		
Nickel Cobalt Ore (Mtpa)	11	11
Calcrete ¹ (Mtpa)	4.3	4.3
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²
Process Water (ML/d)	Up to 97 ³	Up to 97 ³
Natural Gas (Tjpd)	90	90
Outputs ⁴		
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,500	714,500
Ammonium Sulphate Crystals (tpa)	440,000	440,000
Waste and Emissions		
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5
Waste from Dewatering Operations (kL/d)	Up to 500	Up to 500

Element	Description of authorised proposal	Description of approved change to proposal
Sulphur Dioxide (g/s)	329	329
Oxides of Nitrogen (g/s)	27.3	27.3
Carbon Dioxide (Mtpa)	1.14	1.14
Pits, Waste Dumps and Ore Stoo	kpiles	
Area disturbed by waste dumps and ore stockpiles at Murrin Murrin East (km²)	25	25
Area to be disturbed for pits at Murrin Murrin East (km²)	17	17
Area disturbed by pits, waste dumps and ore stockpiles at Murrin Murrin North and South (km²)	26.5	26.5
Height of Waste Dumps (m)	20	20
Depth of pits (m)	Estimated max. 50 m	Up to 50 m
Tailings Storage Facility and Eva	poration Ponds	
Area of Disturbance TSF (km²)	Up to 23	Up to 23
Area of Disturbance Evaporation Ponds (km²)	Up to 12	Up to 12
Groundwater Criteria	 Comply with Department of Mines and Petroleum guidelines Prevent surface breakout of saline liquors; and Prevent the water table outside of the facility from rising to a level shallower than 8m below the ground surface at a distance greater than 250m from the TSF and evaporation ponds. 	Removed as managed under the <i>Mining Act</i> 1978 and licence issued under Part V of the <i>Environmental Protection Act</i> 1986.
Calcrete Quarry		
Area of Disturbance (km²)	15	15
Heap Leach Facility		
Total Area of Disturbance (ha)	40	40
Infrastructure		
Rate of Processing (Mtpa)	0.5	0.5
Waste Residue		
Volume (Mtpa)	0.375	0.375

Note: Text in **bold** in Table 2 indicates the changes to the proposal.

Notes:

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

Figures - all previous Figures are replaced by the following:

Figure 1 Murrin Murrin Regional Location

Figure 2 Murrin Murrin Project Layout

Figure 3 Murrin Murrin Project Mining Area Development Envelopes

Inclusion of Table 3 Coordinates defining Murrin Murrin Nickel-Cobalt Project (GDA

1994 MGA Zone 51)

Inclusion of Table 4 Coordinates defining Murrin Murrin Nickel-Cobalt Project

Borefield Areas (GDA 1994 MGA Zone 51)

[Signed 20 December 2016]

Robert Harvey

DEPUTY CHAIRMAN Environmental Protection Authority under delegated authority

Approval date:

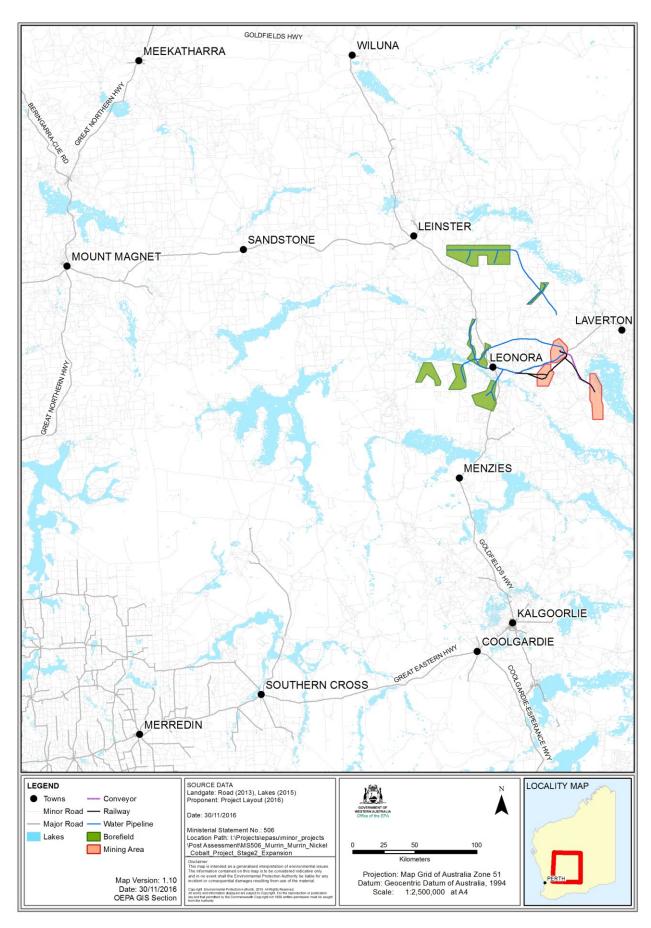


Figure 1 Murrin Murrin Regional Location

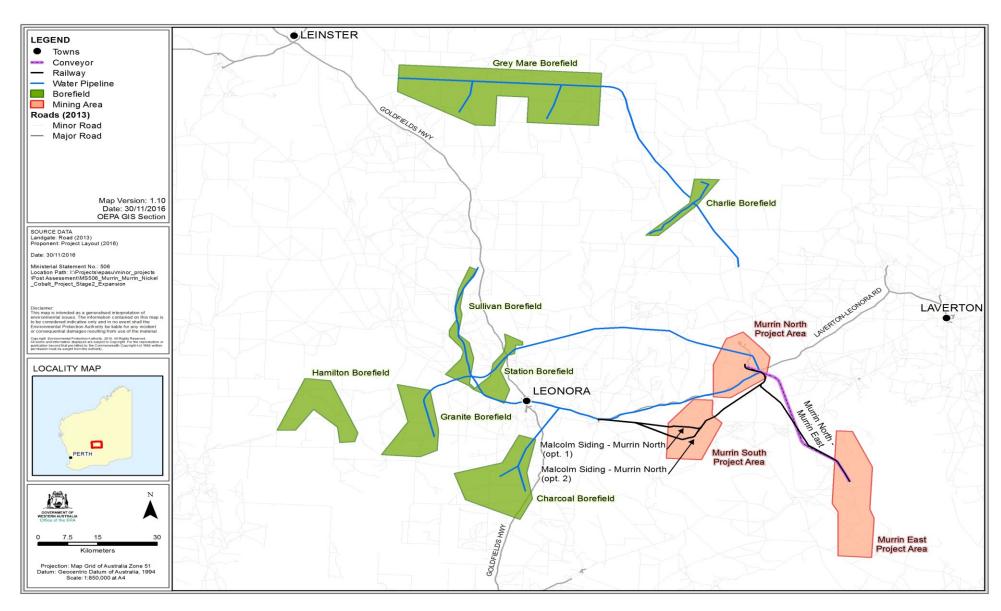


Figure 2 Murrin Murrin Project Layout

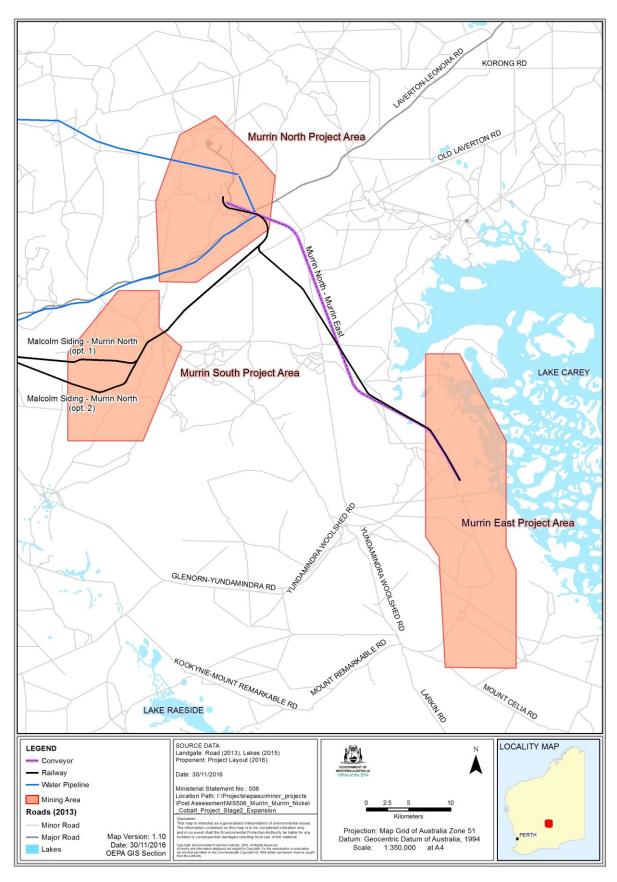


Figure 3 Murrin Murrin Project Mining Area Development Envelopes

Table 3 Coordinates defining Murrin Murrin Nickel-Cobalt Project Mining Areas (GDA 1994 MGA Zone 51)

Coordinate Number	Mining Area Name	Easting	Northing
	Murrin East Project Area		
1	Murrin East Project Area	415540	6798690
2	Murrin East Project Area	419556	6798690
3	Murrin East Project Area	425105	6788330
4	Murrin East Project Area	425105	6775810
5	Murrin East Project Area	426268	6773060
6	Murrin East Project Area	426268	6761430
7	Murrin East Project Area	417865	6761540
8	Murrin East Project Area	417125	6774640
9	Murrin East Project Area	415540	6777020
	Murrin North Project Area		
1	Murrin North Project Area	390596	6826920
2	Murrin North Project Area	395705	6822060
3	Murrin North Project Area	397720	6819800
4	Murrin North Project Area	397000	6813500
5	Murrin North Project Area	388401	6807170
6	Murrin North Project Area	384012	6807240
7	Murrin North Project Area	383580	6816810
8	Murrin North Project Area	386422	6824690
	Murrin South Project Area		
1	Murrin South Project Area	383986	6806190
2	Murrin South Project Area	383986	6801780
3	Murrin South Project Area	386662	6799520
4	Murrin South Project Area	382046	6788380
5	Murrin South Project Area	373157	6788370
6	Murrin South Project Area	373157	6798820
7	Murrin South Project Area	379138	6806190

Table 4 Coordinates defining Murrin Murrin Nickel-Cobalt Project Borefield Areas (GDA 1994 MGA Zone 51)

Coordinate Number	Borefield Name	Easting	Northing
	Charcoal Borefield		
1	Charcoal Borefield	335837	6793360
2	Charcoal Borefield	340037	6792260
3	Charcoal Borefield	338337	6782260
4	Charcoal Borefield	340137	6774560
5	Charcoal Borefield	337337	6768260
6	Charcoal Borefield	323337	6773460
7	Charcoal Borefield	320137	6781110
8	Charcoal Borefield	331987	6784910
·	Charlie Borefield		•
1	Charlie Borefield	376029	6871830
2	Charlie Borefield	382277	6871890
3	Charlie Borefield	382278	6871890
4	Charlie Borefield	377428	6864540
5	Charlie Borefield	377212	6864220
6	Charlie Borefield	377128	6864130
7	Charlie Borefield	367742	6854540
8	Charlie Borefield	365857	6854520
9	Charlie Borefield	364650	6854510
10	Charlie Borefield	365412	6855230
11	Charlie Borefield	375216	6864580
12	Charlie Borefield	375360	6865860
13	Charlie Borefield	375392	6866150
14	Charlie Borefield	375812	6869890
	Granite Borefield		
1	Granite Borefield	304387	6806860
2	Granite Borefield	312737	6805560
3	Granite Borefield	315487	6793810
4	Granite Borefield	315487	6787760
5	Granite Borefield	311237	6785660
6	Granite Borefield	301537	6785810
7	Granite Borefield	307687	6795910
	Grey Mare Borefield		
1	Grey Mare Borefield	300137	6902160
2	Grey Mare Borefield	351138	6902160
3	Grey Mare Borefield	351138	6886560
4	Grey Mare Borefield	333137	6886560
5	Grey Mare Borefield	333137	6894160
6	Grey Mare Borefield	325137	6894160
7	Grey Mare Borefield	325137	6885160
8	Grey Mare Borefield	320137	6885160
9	Grey Mare Borefield	300137	6894160

Coordinate Number	Borefield Name	Easting	Northing
<u>'</u>	Hamilton Borefield	-	
1	Hamilton Borefield	281160	6807510
2	Hamilton Borefield	287584	6807180
3	Hamilton Borefield	295202	6791950
4	Hamilton Borefield	294561	6789280
5	Hamilton Borefield	290892	6788820
6	Hamilton Borefield	290044	6793410
7	Hamilton Borefield	283757	6798390
8	Hamilton Borefield	279449	6791910
9	Hamilton Borefield	274871	6791670
•	Station Borefield		
1	Station Borefield	330649	6823320
2	Station Borefield	335342	6821200
3	Station Borefield	335342	6820160
4	Station Borefield	333609	6820140
5	Station Borefield	333413	6817540
6	Station Borefield	331733	6816930
7	Station Borefield	330089	6812410
8	Station Borefield	332781	6806800
9	Station Borefield	331532	6802630
10	Station Borefield	323611	6806380
11	Station Borefield	323938	6806710
12	Station Borefield	327712	6810570
13	Station Borefield	327953	6812510
14	Station Borefield	327979	6812700
15	Station Borefield	328244	6814320
16	Station Borefield	330643	6817690
17	Station Borefield	331123	6820430
	Sullivan Borefield	331113	00_0 .00
1	Sullivan Borefield	320862	6842840
2	Sullivan Borefield	322699	6842040
3	Sullivan Borefield	319748	6836840
4	Sullivan Borefield	319067	6830660
5	Sullivan Borefield	319656	6828510
6	Sullivan Borefield	319017	6822570
7	Sullivan Borefield	321855	6820300
8	Sullivan Borefield	323232	6815700
9	Sullivan Borefield	322768	6810270
10	Sullivan Borefield	322759	6810170
11	Sullivan Borefield	322580	6808170
12	Sullivan Borefield	323938	6806710
13	Sullivan Borefield	323611	6806380
14	Sullivan Borefield	322533	6807460
15	Sullivan Borefield	316360	6810520
12	Sumvan Durenelu	210200	0010250

Coordinate Number	Borefield Name	Easting	Northing
16	Sullivan Borefield	320049	6815250
17	Sullivan Borefield	320564	6817410
18	Sullivan Borefield	319906	6818680
19	Sullivan Borefield	316844	6821910
20	Sullivan Borefield	316709	6823780
21	Sullivan Borefield	318582	6827330
22	Sullivan Borefield	317751	6830550
23	Sullivan Borefield	318386	6835920

Attachment 6 to Ministerial Statement 506

Change to proposal approved under section 45C of the Environmental Protection Act 1986

This Attachment replaces Attachment 1 to Attachment 5 of Ministerial Statement 506

Proposal: Murrin Murrin Nickel Cobalt Project Stage 2 Expansion 60km East of Leonora

Proponent: Minara Resources Pty Ltd

Changes:

The change is to amend the authorised extent, including:

- increase the water discharged from dewatering operations (by removing the criteria);
- increase the maximum depth of pits from 50 m to 80 m; and
- increase the maximum height of waste dumps (by removing the criteria).

Table 1: Summary of the Proposal

Proposal Title	Murrin Murrin Nickel Cobalt Project Stage 2 Expansion 60km East of Leonora.
Short Description	The proposal is for the Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation, 60 kilometres east of Leonora.
	The Stage 2 expansion includes the mining of additional ore, an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Table 2: Location and authorised extent of physical and operational elements

Element	Previously Authorised Extent	Authorised Extent
Life of Project (Indicative)	~30 years	~30 years
Inputs		
Nickel Cobalt Ore (Mtpa)	11	11
Calcrete1 (Mtpa)	4.3	4.3
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²
Process Water (ML/d)	Up to 97 ³	Up to 97 ³
Natural Gas (Tjpd)	90	90
Outputs ⁴		
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,000	714,000
Ammonium Sulphate Crystals (tpa)	440,000	440,000
Waste and Emissions		
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5

Element	Previously Authorised Extent	Authorised Extent
Waste from Dewatering Operations (kL/d)	Up to 500	Removed
Sulphur Dioxide (g/s)	329	329
Oxides of Nitrogen (g/s)	27.3	27.3
Carbon Dioxide (Mtpa)	1.14	1.14
Pits, Waste Dumps and Ore	Stockpiles	
Area disturbed by waste dumps and ore stockpiles at Murrin Murrin East (km2)	25	25
Area to be disturbed for pits at Murrin Murrin East (km2)	17	17
Area disturbed by pits, waste dumps and ore stockpiles at Murrin Murrin North and South (km2)	26.5	26.5
Height of Waste Dumps (m)	20	Removed
Depth of pits (m)	Up to 50 m	Up to 80 m
Tailings Storage Facility and	d Evaporation Ponds	
Area of Disturbance TSF (km²)	Up to 23	Up to 23
Area of Disturbance Evaporation Ponds (km²)	Up to 12	Up to 12
Calcrete Quarry		
Area of Disturbance (km²)	15	15
Heap Leach Facility		
Total Area of Disturbance	40	40
Infrastructure		
Rate of Processing (Mtpa)	0.5	0.5
Waste Residue		
Volume (Mtpa)	0.375	0.375

Note: Text in **bold** in Table 2 indicates a change to the proposal.

Notes:

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

Table 3: Abbreviations

Abbreviation	Term
ha	hectare
km	kilometre
GL	gigalitre

Figures (attached)

- Figure 1 Murrin Murrin Regional Location
- Figure 2 Murrin Murrin Project Layout
- Figure 3 Murrin Murrin Project Mining Area Development Envelopes

Coordinates defining the Approved Total Disturbance Area for the Murrin Murrin Nickel Cobalt Project, are held by the Department of Water and Environmental Regulation (File Number: 1DEWRA-000889).

[Signed 17 September 2018]

Dr Tom Hatton CHAIRMAN Environmental Protection Authority under delegated authority

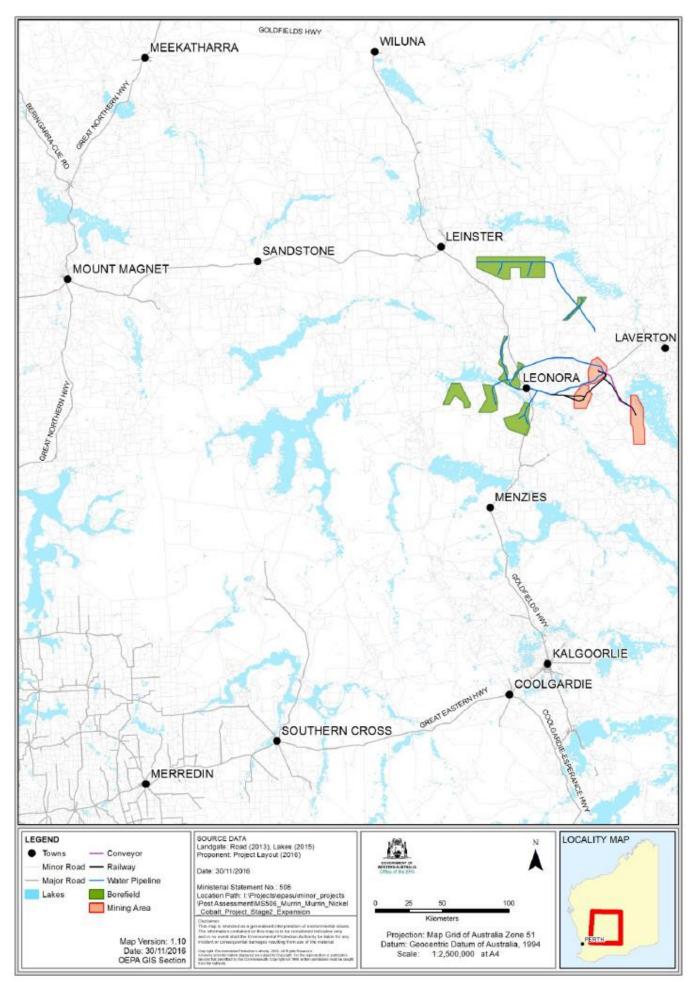
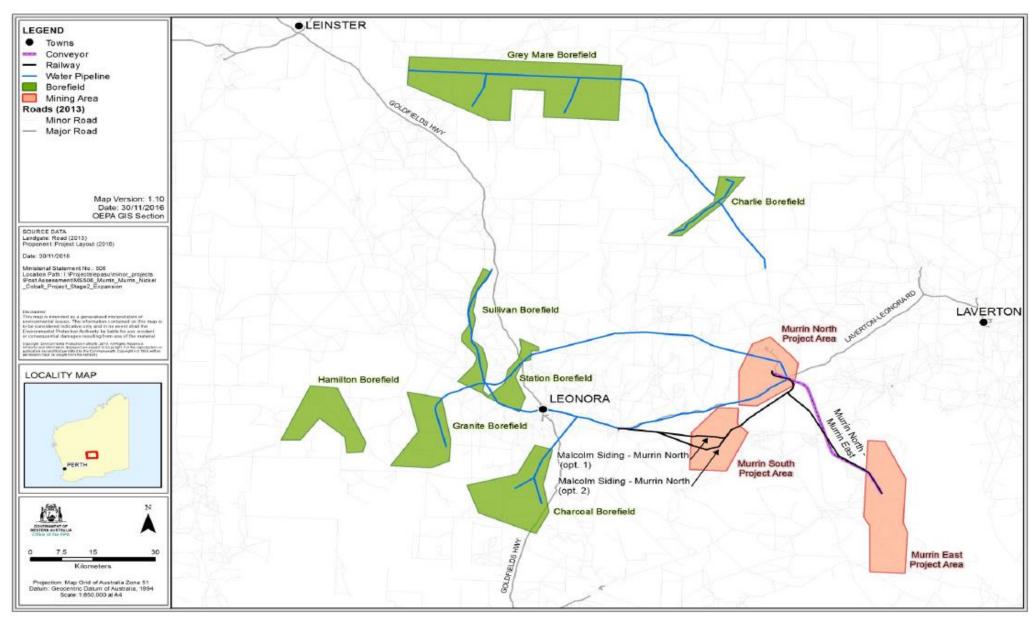



Figure 1 Murrin Murrin Regional Location

Figure 2 Murrin Murrin Project Layout

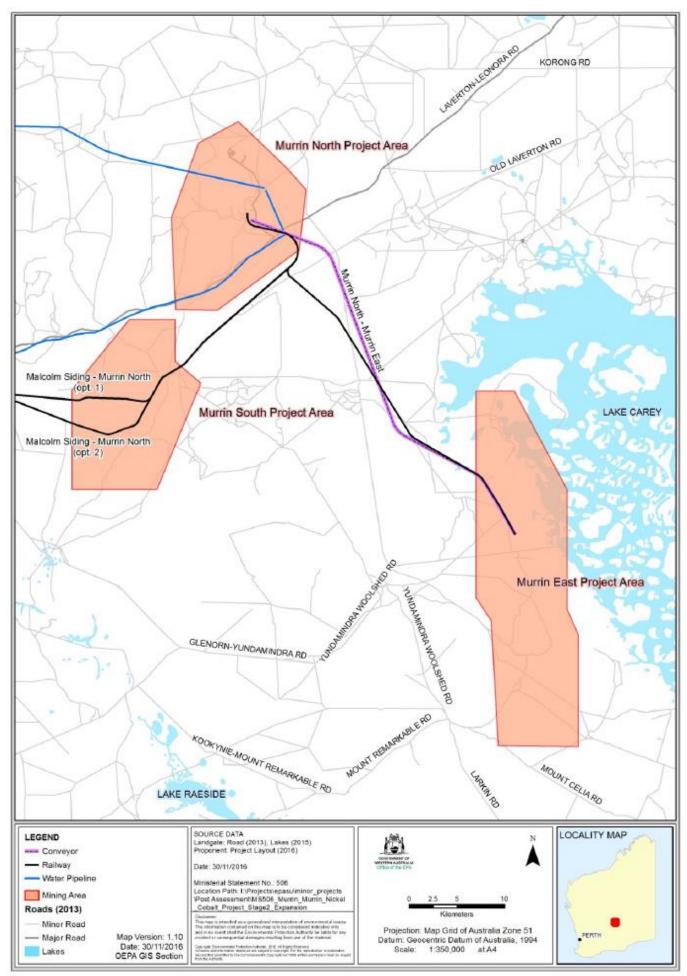


Figure 3 Murrin Murrin Project Mining Area Development Envelopes

Attachment 7 to Ministerial Statement 506

Amendment to proposal approved under section 45C of the Environmental Protection Act 1986

This Attachment replaces Schedule 1 and Attachment 1 to Attachment 6 of Ministerial Statement 506.

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of

Leonora

Proponent: Minara Resources Pty Ltd

Changes:

- Reduce the authorised land disturbance within the development envelope at Murrin Murrin East by 1,650 hectares (ha)
- Increase in authorised land disturbance to Murrin Murrin North and Murrin Murrin South by 1,650 ha.
- Reduce the total spatial extent of the development envelope from 68,888 ha to 20,172 ha through the following:
 - decrease the existing development envelope for Murrin Murrin North and Murrin Murrin South by 23,774 ha, from 37,435 ha to 13,661 ha.
 - o decrease the existing development envelope for Murrin Murrin East by 24,942 ha from 31,453 ha to 6,511 ha.

Table 1: Summary of the proposal

Proposal title	Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of Leonora.
Short description	The proposal is for the Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation, 60 kilometres east of Leonora.
	The Stage 2 expansion includes the mining of additional ore, an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Table 2: Location and authorised extent of physical and operational elements

Element	Previously Authorised Extent	Authorised Extent
Life of Project (Indicative)	~30 years	~30 years
Development Envelope	Figures 2 and 3	Clearing of 6,850 hectares within a Development Envelope

Element	Previously Authorised Extent	Authorised Extent
		of 20,172 hectares
Inputs		
Nickel Cobalt Ore (Mtpa)	11	11
Calcrete1 (Mtpa)	4.3	4.3
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²
Process Water (ML/d)	Up to 97 ³	Up to 97 ³
Natural Gas (Tjpd)	90	90
Outputs ⁴		
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,000	714,000
Ammonium Sulphate Crystals (tpa)	440,000	440,000
Waste and Emissions		
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5
Sulphur Dioxide (g/s)	329	329
Oxides of Nitrogen (g/s)	27.3	27.3
Carbon Dioxide (Mtpa)	1.14	1.14
Pits, Waste Dumps and Ore		1.17
Area disturbed by waste	25	Removed
dumps and ore stockpiles at Murrin Murrin East (km²)		
Area to be disturbed for pits at Murrin Murrin East (km²)	17	Removed
Area disturbed by pits, waste dumps and ore stockpiles at Murrin Murrin North and South (km ²)	26.5	Removed
Total disturbance of pits, waste dumps and ore stockpiles (km²)	68.5	68.5 (6,850 ha)
Depth of pits (m)	Up to 80 m	Up to 80 m
Tailings Storage Facility and	d Evaporation Ponds	
Area of Disturbance TSF (km²)	Up to 23	Up to 23
Area of Disturbance	Up to 12	Up to 12
Evaporation Ponds (km²)	• • •	,
Calcrete Quarry		
Area of Disturbance (km²)	15	15
Heap Leach Facility		
Total Area of Disturbance	40	40
Infrastructure		
Rate of Processing (Mtpa)	0.5	0.5
Waste Residue		

Element	Previously Authorised Extent	Authorised Extent
Volume (Mtpa)	0.375	0.375

Note: Text in **bold** in Table 2 indicates a change to the proposal.

Notes:

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

Table 3: Abbreviations

Abbreviation	Term
CEO	Chief Executive Officer
GL	gigalitre
ha	hectare
km	kilometre

Figures (attached)

Figure 1: Regional location

Figure 2: Development envelope – Murrin Murrin North and South

Figure 3: Development envelope – Murrin Murrin East

All coordinates are in metres, listed in Map Grid of Australia Zone 51 (MGA Zone 51, datum of Geocentric Datum of Australia 1994 (GDA94).

Spatial data depicting the figures are held by the Department of Water and Environmental Regulation in Environment Online.

[Signed 6 November 2023]

Prof Matthew Tonts

CHAIR Environmental Protection Authority under delegated authority

6 November 2023

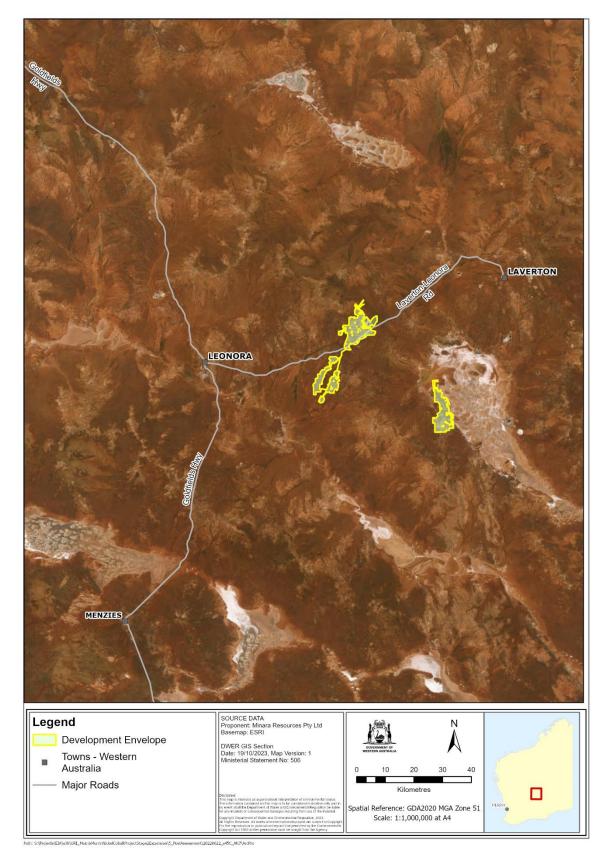


Figure 1: Regional location

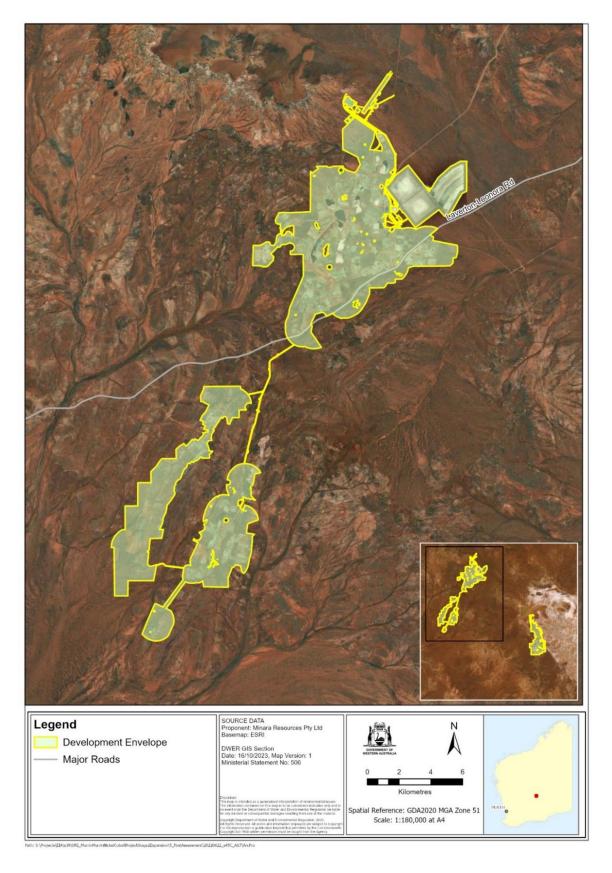


Figure 2: Development envelope - Murrin Murrin North and South

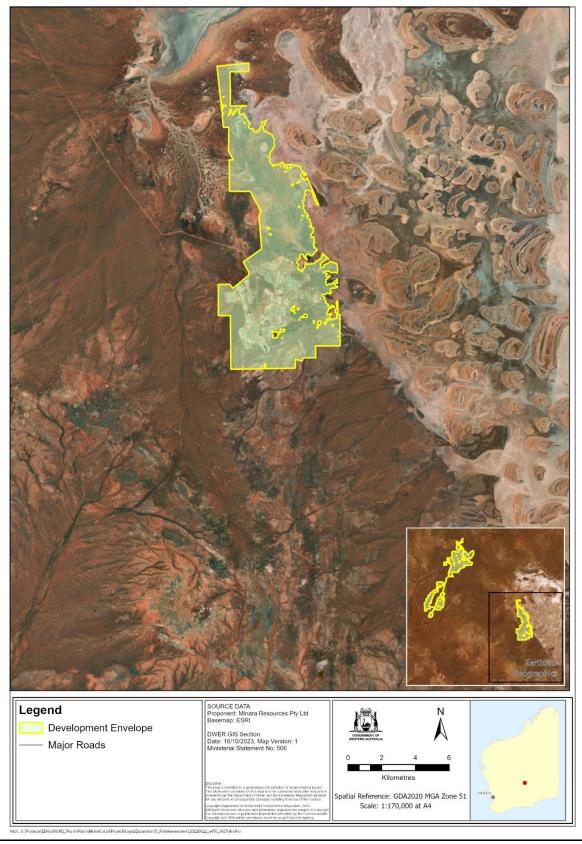


Figure 3: Development envelope – Murrin Murrin East

Attachment 8 to Ministerial Statement 506

Amendment to proposal approved under section 45C of the Environmental Protection Act 1986

This Attachment replaces Schedule 1 and Attachment 1 to Attachment 7 of Ministerial Statement 506.

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of

Leonora

Proponent: Minara Resources Limited

Changes:

• No additional clearing, emissions or discharges or changes to the life of mine.

- Ministerial Statement figures updated to include proposal supporting infrastructure previously presented in Attachment 6 and incorrectly omitted from Attachment 7 due to an administrative error. Figures updated to include water pipeline connections that were omitted due to an error of transcription in Attachment 6.
- The development envelope details in Table 2 updated to correctly reference mining and borefield development envelopes referenced in the corrected figures.
- The development envelope extent of 20,172 hectares (ha) in Table 2 has been moved to the correct location under 'Pits, Waste Dumps and Ore Stockpiles' in Table 2.

Table 1: Summary of the proposal

Proposal title	Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of Leonora.
Short description	The proposal is for the Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation, 60 kilometres east of Leonora.
	The Stage 2 expansion includes the mining of additional ore, an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Table 2: Location and authorised extent of physical and operational elements

Element	Previously Authorised Extent	Authorised Extent
Life of Project (Indicative)	~30 years	~30 years

Element	Previously Authorised Extent	Authorised Extent	
Mining and Borefield Development Envelopes	Clearing of 6,850 hectares within a Development Envelope of 20,172 ha	Figure 1 to Figure 4	
Inputs			
Nickel Cobalt Ore (Mtpa)	11	11	
Calcrete ¹ (Mtpa)	4.3	4.3	
Elemental Sulphur (Mtpa)	1.9 ²	1.9 ²	
Process Water (ML/d)	Up to 97 ³	Up to 97 ³	
Natural Gas (Tjpd)	90	90	
Outputs ⁴			
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,000	714,000	
Ammonium Sulphate Crystals (tpa)	440,000	440,000	
Waste and Emissions			
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5	
Sulphur Dioxide (g/s)	329	329	
Oxides of Nitrogen (g/s)	27.3	27.3	
Carbon Dioxide (Mtpa)	1.14	1.14	
Pits, Waste Dumps and Ore	Stockpiles		
Total disturbance of pits, waste dumps and ore stockpiles (km²)	68.5 (6,850 ha)	68.5 (6,850 ha)	
Mining Development Envelope	Not specified	A Mining Development Envelope of 20,172 ha (Figure 3 and Figure 4)	
Depth of pits (m)	Up to 80 m	Up to 80 m	
	Tailings Storage Facility and Evaporation Ponds		
Area of Disturbance TSF (km²)	Up to 23	Up to 23	
Area of Disturbance	Up to 12	Up to 12	
Evaporation Ponds (km²)			
Calcrete Quarry			
Area of Disturbance (km²)	15	15	
Heap Leach Facility			
Total Area of Disturbance	40	40	
Infrastructure			
Rate of Processing (Mtpa)	0.5	0.5	
Waste Residue			
Volume (Mtpa)	0.375	0.375	

Note: Text in **bold** in Table 2 indicates a correction of administrative error.

Notes:

- 1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.
- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products.

Table 3: Abbreviations

Abbreviation	Term
CEO	Chief Executive Officer
GL	gigalitre
ha	hectare
km	kilometre

Figures (attached)

Figure 1: Regional location Figure 2: Project layout

Figure 3: Development envelope – Murrin Murrin North and South

Figure 4: Development envelope – Murrin Murrin East

All coordinates are in metres, listed in Map Grid of Australia Zone 51 (MGA Zone 51, datum of Geocentric Datum of Australia 2020 (GDA2020).

Spatial data depicting the figures are held by the Department of Water and Environmental Regulation in Environment Online.

[Signed 24 April 2024]

Prof Matthew Tonts

CHAIR

Environmental Protection Authority under delegated authority

Approval date: 24 April 2024

Figure 1 Regional location¹

¹ The borefield development envelope was previously presented as 'borefield' in Attachment 6.

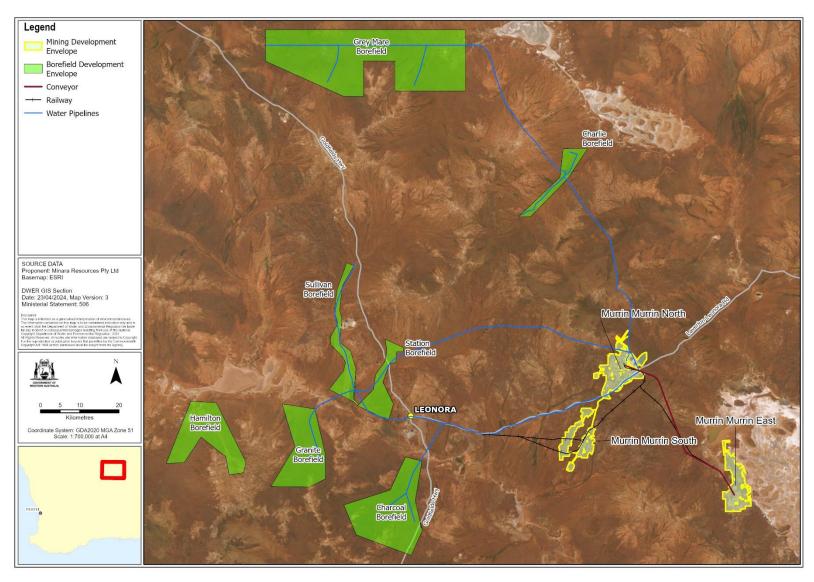


Figure 2 Project layout

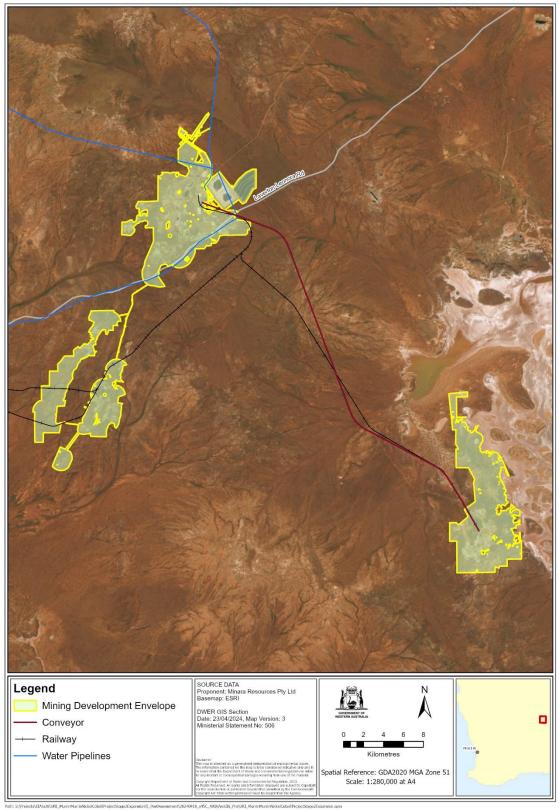


Figure 3 Development envelope – Murrin Murrin North and South

Figure 4 Development envelope – Murrin Murrin East

ATTACHMENT 9 TO MINISTERIAL STATEMENT 506

Amendment to proposal approved under section 45C of the Environmental Protection Act 1986

This Attachment replaces Schedule 1, Schedule 2 and Attachment 1 to Attachment 8 of Ministerial Statement 506

Proposal: Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion 60km East of Leonora

Proponent: Minara Resources Limited

Changes:

- Addition of an 849 hectare (ha) Hybrid Renewable Energy (HRE) development envelope.
- Clearing of 188 ha of native vegetation for the construction and operation of hybrid renewable energy system consisting of a solar farm, wind turbines, battery storage system and associated infrastructure within the HRE development envelope.
- Additional Proponent commitment (Schedule 2) required by Condition 2 to implement the MMO Hybrid Renewable Energy Project Bird and Bat Adaptive Management Plan (2025).

Table 1: Summary of the proposal

Proposal title	Murrin Murrin Nickel-Cobalt Project Stage 2 Expansion, 60 km east of Leonora
Short description	The proposal is for the Stage 2 expansion of the Murrin Murrin Nickel-Cobalt mining and processing operation, 60 kilometres east of Leonora. The Stage 2 expansion includes the mining of additional ore, an expansion of the processing plant to process additional ore; and the development of additional infrastructure associated with mining and processing of the ore.

Table 2: Location and authorised extent of physical and operational elements

Element	Previously authorised	Authorised extent
	extent	
Life of Project (Indicative)	~30 years	~30 years
Mining, Borefield and Hybrid	Figure 1 to Figure 4	Figure 1 to Figure 5
Renewable Energy		
Development Envelopes		
Inputs		
Nickel Cobalt Ore (Mtpa)	11	11
Calcrete ¹ (Mtpa)	4.3	4.3
Elemental Sulphur (Mtpa)	1.9 ²	1.92
Process Water (ML/d)	Up to 97 ³	Up to 97 ³
Natural Gas (Tjpd)	90	90
Outputs ⁴		

Element	Previously authorised extent	Authorised extent
Maximum Capacity of Nickel, Cobalt, and Mixed Products (tpa)	714,000	714,000
Ammonium Sulphate Crystals (tpa)	440,000	440,000
Waste and Emissions		
Tailings Solids (Mtpa) (including gypsum)	14.5	14.5
Sulphur Dioxide (g/s)	329	329
Oxides of Nitrogen (g/s)	27.3	27.3
Carbon Dioxide (Mtpa)	1.14	1.14
Pits, Waste Dumps and Ore Sto	ckpiles	
Total disturbance of pits, waste dumps and ore stockpiles (km²)	68.5 (6,850 ha)	68.5 (6,850 ha)
Mining Development Envelope	A Mining Development Envelope of 20,172 ha (Figure 3 and Figure 4)	A Mining Development Envelope of 20,172 ha (Figure 3 and Figure 4)
Depth of pits (m)	Up to 80 m	Up to 80 m
Tailings Storage Facility and Eva	1 -	Sp 00 00
Area of Disturbance TSF (km²)	Up to 23	Up to 23 (2,300 ha)
Area of Disturbance Evaporation Ponds (km²)	Up to 12	Up to 12 (1,200 ha)
Calcrete Quarry		
Area of Disturbance (km²)	15	15 (1,500 ha)
Heap Leach Facility		
Total Area of Disturbance	40	40 (4,000 ha)
Infrastructure		
Rate of Processing (Mtpa)	0.5	0.5
Waste Residue		
Volume (Mtpa)	0.375	0.375
Hybrid Renewable Energy (HRE) Infrastructure	
HRE Area of Disturbance	0	188 ha (Figure 5)
HRE Development Envelope	0	A HRE Development Envelope of 849 ha (404 ha is located within the Mining Development Envelope) (Figure 5)

Note: Text in **bold** in Table 2 indicates a change to the proposal.

Notes:

1. The quantity of calcrete required will vary as a function of its calcium carbonate content. High calcium carbonate content will mean that a smaller quantity of calcrete will enable the Project to meet its neutralization requirements. The estimated value of 3.9 Mtpa is based on an average calcium carbonate content of 52%.

- 2. Maximum capacity is based on the option of two 4,400 tpd sulphuric acid plants to enable supply to third party users.
- 3. Maximum capacity is based on the option of a 350,000 tpa ammonia plant to enable supply to third party users.
- 4. The product masses listed as the outputs represent the maximum production rates for each product in isolation from other related products

Table 3: Abbreviations

Abbreviation	Term
CEO	Chief Executive Officer
GL	gigalitre
g/s	grams per second
ha	hectare
HRE	hybrid renewable energy
km	kilometre
km²	Kilometre squared
Mtpa	million tonnes per annum
tpa	tonnes per annum
tpd	tonnes per day

Figures (attached)

Figure 1: Regional location Figure 2: Project layout

Figure 3: Development envelope – Murrin Murrin North and South

Figure 4: Development envelope – Murrin Murrin East

Figure 5: Development envelope and disturbance footprint – Hybrid Renewable Energy

All coordinates are in metres, listed in Map Grid of Australia Zone 51 (MGA Zone 51, datum of Geocentric Datum of Australia 2020 (GDA2020).

Spatial data depicting the figures are held by the Department of Water and Environmental Regulation in Environment Online.

Darren Walsh

CHAIR

Environmental Protection Authority under delegated authority

Approval date: 08 October 2025



Figure 1: Regional location

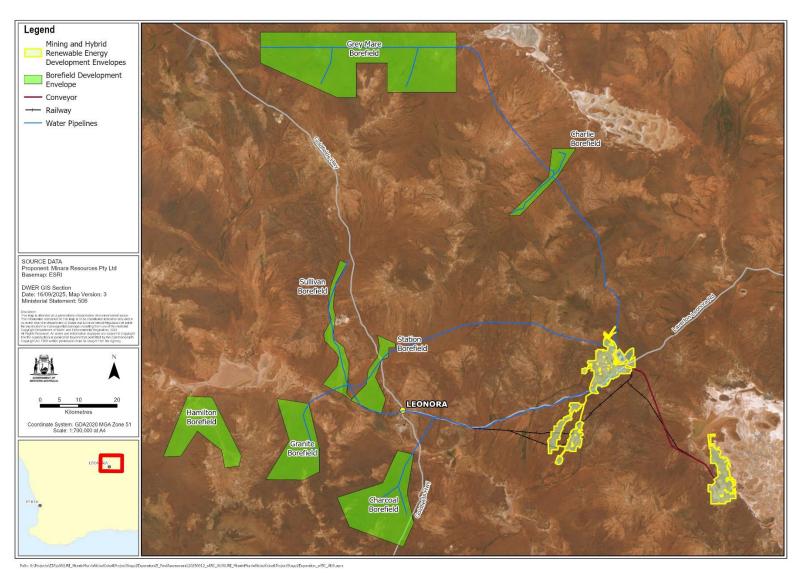


Figure 2: Project layout

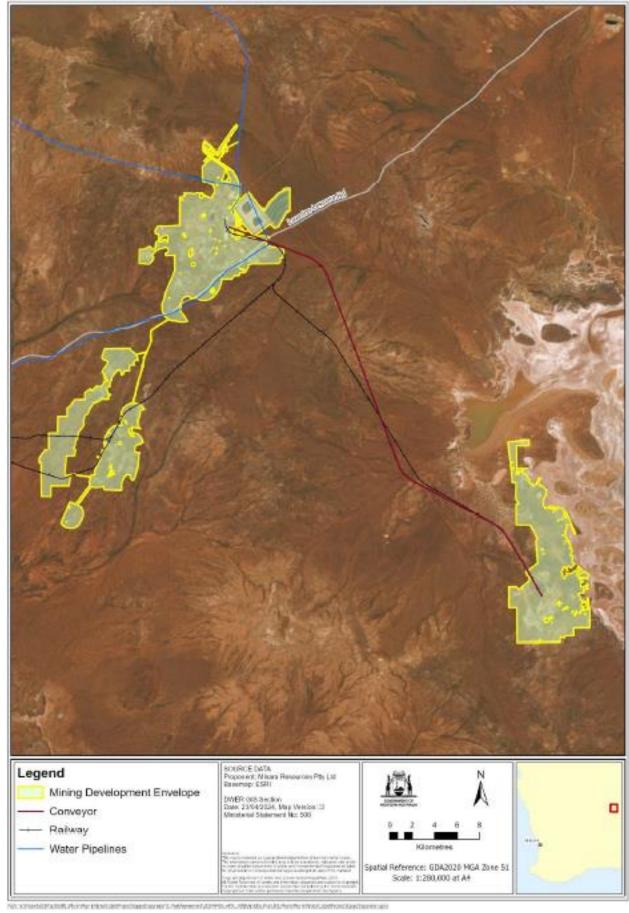


Figure 3: Development envelope – Murrin Murrin North and South

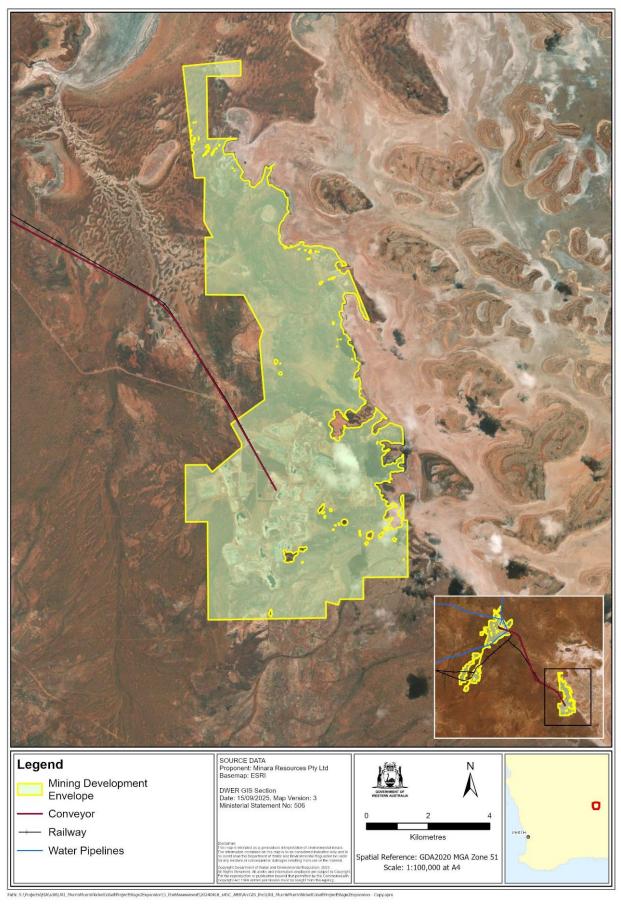


Figure 4: Development envelope – Murrin Murrin East

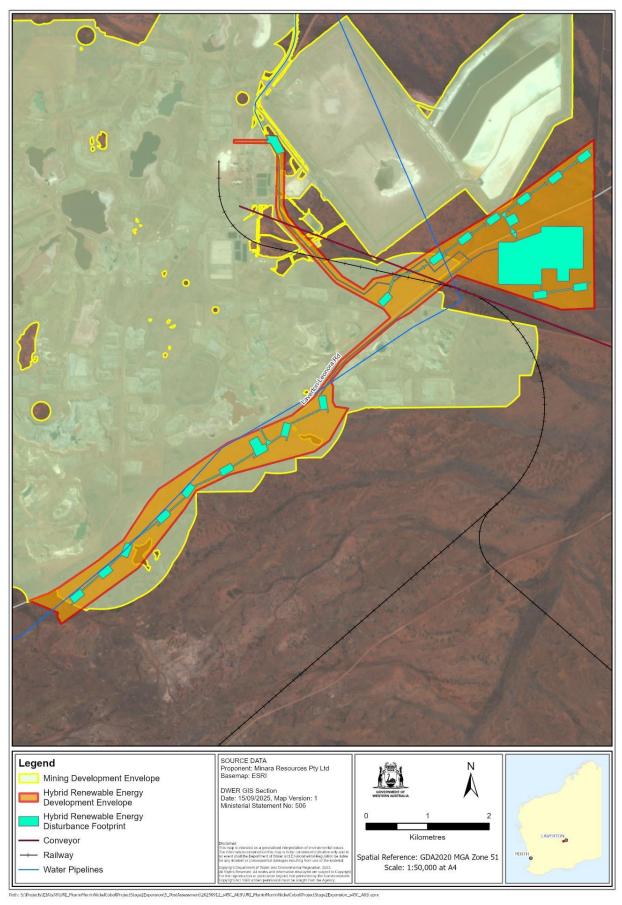


Figure 5: Development Envelope and disturbance footprint – Hybrid Renewable Energy

Proponent's Consolidated Environmental Management Commitments

Last amended 08 October 2025

MURRIN MURRIN NICKEL-COBALT PROJECT STAGE 2 EXPANSION 60 KM EAST OF LEONORA (1229)

MINARA RESOURCES PTY LT

Murrin Murrin Stage 2 Expansion (1229)

Summary of Proponent's Environmental Management Commitments

Issue	Objective	Commitment	To Whose Satisfaction	Status
Previous Comn	nitments Made During the EL	A Process	Swiisiweiion	
Environmental Management Programme	To develop and implement an Environmental Management programme to ensure sound environmental management of the Projects construction phase.	Commitment 1 Prior to commencement of the Project, the Proponent will prepare and implement an Environmental Management Programme for the construction phase, in consultation with the DEP, DME, CALM and other relevant agencies to meet the requirements of the EPA. Further, the Proponent will ensure that its contractors comply with the environmental management strategies and procedures in the EMP.	Developed in consultation with the DEP, DME, CALM and other relevant agencies to meet the requirements of the EPA.	Complete for currently MM, Stage 1 Project. The EMP will be updated as required for the Expansion Project.
Environmental Management System	To develop and implement an Environmental Management System to ensure sound environmental management of the Project's operations and decommissioning phase.	Commitment 2 The proponent will develop and implement an Environmental Management System for the operation of the Project prior to the start of operations. This EMS will be developed in consultation with DEP, DME and CALM, and be to the satisfaction of the EPA. Further, the Proponent will ensure that its contractors comply with the environmental management strategies and procedures described in the EMS.	Developed in consultation with the DEP, DME and CALM to meet the requirements of the EPA.	In Progress and likely to be in place by November 1998
Protection of flora and vegetation	To minimise disturbance of the general flora and vegetation of the Project Area.	Commitment 3 The Proponent will progressively rehabilitate disturbed areas to minimise disturbance of biological communities. The rehabilitation will be completed to the satisfaction of the EPA in accordance with the approved EMP and EMS.	EPA	Ongoing
Protection of significant flora	To minimise disturbance of known <i>Hemigenia exilis</i> populations where possible.	Commitment 4 The Proponent will undertake the construction, operation and decommissioning of the Project in a manner that minimises disturbance to significant flora populations. Further the Proponent will require its contractors to comply with this commitment. This will be undertaken to the satisfaction of the EPA and CALM, in accordance with the approved EMP and EMS.	EPA, CALM	Management Plan for Hemigenia exilis approved by CALM. Ministerial Approval "to take" Hemigenia exilis at Murrin Murrin South obtained. Ongoing research being undertaken. Hemigenia exilis removed from the Declared Rare

Issue	Objective	Commitment	To Whose Satisfaction	Status
				Flora List and now categorised as Priority four Species. Commitment has been updated reflect the New Status of Hemigenia exilis. EMP to be updated for the Expansion Project.
Erosion Control	To minimise the risk of erosion and sedimentation	Commitment 5 The Proponent will minimise erosion by minimising the extent of land disturbance and progressively rehabilitating disturbed areas. This will be undertaken to the satisfaction of the EPA and DME in accordance with the approved EMP and EMS.	EPA, DME	Ongoing
Potential water quality impacts due to surface runoff	To minimise the off-site transport of sediments	Commitment 6 The proponent will minimise the off-site transport of sediments by minimising exposed surfaces, identifying and treating on-site areas prone to erosion and progressively rehabilitating disturbed areas. The Proponent will also undertake a water quality monitoring Programme for Cement Creek and Katata Creek. These monitoring programmes will be developed and implemented to meet the requirements of the EPA, DME and WRC. If adverse impacts on water quality are observed through monitoring, the proponent will develop and implement management measures to rectify these impacts.	EPA, DME, Water & Rivers Commission	Monitoring programme for Cement Creek has been established Ongoing programme.
Dust control – construction phase	To control any dust generated as a result of construction phase activities	Commitment 7 The proponent will implement dust mitigation measures including containment and suppression during construction to the satisfaction of the EPA and DME.	EPA, DME	Ongoing
Dust control - operations	To minimise dust generation during the operations phase	Commitment 8 The proponent will minimise dust generation during operation of the facility by the following measures: • regular cleaning of areas likely to accumulate dust; • sealing major roadways within the Plant Site; and • use of water sprays on mine areas, ore and calcrete haulage routes, stockpiles and other Project Areas, as required	EPA, DME	Dust control measures incorporated into the Project design and implementation.

Issue	Objective	Commitment	To Whose Satisfaction	Status
		This programme will be completed to the satisfaction of the EPA and DME.		
Greenhouse Gas Emissions	To comply with the State and Federal Government Greenhouse Policies.	Commitment 9 The total carbon dioxide emission for the Project will explore mechanisms to minimise greenhouse gas emission on an ongoing basis. The Proponent will consider entering into the Federal Government's Greenhouse Challenge Programme.	EPA	Methods of minimising carbon dioxide emissions are being explored on an ongoing basis. The Proponent is currently having discussions with the Federal Government's Greenhouse Challenge Office.
Noise	To minimise the impact of noise generated by the construction and operation of the Project.	Commitment 10 The Proponent will ensure that noise from the Project will comply with the State's noise regulations. If noise levels attributable to the Project exceed EPA criteria, the Proponent will take measures to reduce the impact.	EPA	No unacceptable noise impacts to date
Overburden waste dumps	To ensure that the final overburden dumps are stable and support a self- sustaining ecosystem	Commitment 11 The Proponent will design and operate the overburden waste dumps such that they are stable and resistant to erosion, to the satisfaction of the EPA and DME.	EPA, DME	DME approval of waste dump designs via approved NOI
Tailings Storage Facility	To design, construct and operate an environmentally sound TSF.	Commitment 12 The Proponent will design and operate the tailings storage facility in accordance with the requirements of the EPA and DME to ensure that the tailings storage facility and evaporation ponds do not result in unacceptable impacts to the existing groundwater system.	EPA, DME	Technical details on the design of TSF and evaporation ponds approved by the DME, DEP and WRC for the MM Stage 1 Project. The design of these facilities will be modified due to the Expansion Project. The modified design will be submitted to DME, DEP and WRC for approval.
Design of the solid and liquid waste disposal facilities	To ensure the integrity of the solid and liquid waste disposal facilities	Commitment 13 Prior to the construction and operation of the tailings dam and evaporation pond, the Proponent will undertake the following: • A more detailed assessment of tailings solids and liquids geochemisty, including predicted compositions	EPA, DME, WRC	Considerable amount of work was undertaken during detailed design of the tailings dams and evaporation ponds for the MM Stage 1 Project. This

Issue	Objective	Commitment	To Whose Satisfaction	Status
Groundwater monitoring	To monitor the impacts of the construction and operation of the waste disposal facilities on local groundwater resources.	relevant to environmental guidelines and standards. This assessment will focus on Total Dissolved Solids, major ions and metals (via an elemental analysis) • An assessment of the predicted particle form and geochemical characteristics of the tailings, including settling characteristics, and settled and compacted permeabilities. • A more detailed evaluation of potential alternative tailings storage options. Commitment 14 The Proponent will design and install a groundwater monitoring programme up- and downgradient of the tailings dam and the evaporation ponds prior to construction of these facilities. The monitoring programme will be designed and operated to satisfaction of the DME, DEP and WRC.	EPA, DME, Water & Rivers Commission	work addressed all of the issues covered by this commitment and has been approved by the DME, DEO and WRC. This work is being reviewed and updated to incorporate the Expansion Project. Groundwater monitoring programmes have been established in the vicinity of the TSF, evaporation ponds, borefields and calcrete quarry for the MM Stage 1 Project. These programmes have been revised and approved by the DME, DEP and WRC as part of the Project's EMP. Continuing compliance with the WRC Groundwater Well License Conditions. The programmes will be reviewed and updated to incorporate the Expansion
Pastoral activities	To minimise the impacts on existing pastoral activities.	Commitment 15 The Proponent will minimise the impact of the Project on pastoral activities and ensure that pastoral water supplies in the Project Area are maintained.	Pastoral lease holders, Water & Rivers Comisisons	Project. Ongoing
Aboriginal Heritage	To avoid disturbance of Aboriginal Heritage sites.	Commitment 16 The Proponent will comply with the provisions of the <i>Aboriginal Heritage Act 1972</i>	Department of Aboriginal Affairs	Ongoing
Operation Risks	To minimise the risks associated with the plant operations.	Commitment 17 The following commitments are made relating to plant operations:	EPA and DME	the design of the MM Stage 1 plant has

Issue	Objective	Commitment	To Whose Satisfaction	Status
		 hazardous chemicals and fuel storage areas will be bunded, and concreted in accordance with AS1940-1933; systems will be installed (either as procedures or by design) that would ensure shutdown following a release of either hydrogen or natural gas; rigorous procedures will be in place to prevent air ingress into vessels containing either natural gas or hydrogen, at either plant stat-up or shutdown; the flare exhaust stack will be sited such that there is no potential for off-site thermal radiation effects and at a height sufficient to ensure adequate dispersion of toxic emissions; and a hazard and operability study (HAZOPP) will be conducted during the detailed design of the plant processing facilities. 	Sausiacuon	incorporated these safety features. Numerous hazard operability studies have been conducted during the design and current commissioning. This work will be reviewed and updated to incorporate the Expanded Project. Ongoing review of safety.
Fauna	To ensure that adequate information is available for the purposes of managing the Project, workforce education and workforce induction	Commitment 18 The proponent will undertake fauna studies (including subterranean fauna surveys) to ensure that adequate information is available for the purposes of managing the Project as well as educating the workforce. The scope of these studies will be determined prior to the commencement of the construction phase in consultation with the DEP, CALM, and the WA museum, and will be undertaken to meet the requirements of the EPA. Survey results will also be provided to Environment Australia.	EPA with advice from CALM	Studies of the approved MM Stage 1 Project Area have been completed and approved by CALM. Further Studies of the Areas to be affected by the Expansion Project have been completed. Surveys for subterranean fauna to be undertaken in November 1998. The Surveys results and any required management measures will be supplied to the DER as soon as possible following completion of the survey.
Atmospheric emissions	To ensure the atmospheric emissions comply with the specified criteria.	Commitment 19 The Proponent will specify the emissions criteria in tender documents for the supply of equipment for the plant. Compliance testing will be	EPA	Emissions criteria have been specified in tender documents.

Issue	Objective	Commitment	To Whose Satisfaction	Status
		carried out by the Proponent during the commissioning of the plan to confirm that the emissions from the plant equipment are within the specified limits. This commitment will be implemented to meet the requirements of the EPA.		
Solid and Liquid Waste Disposal Facilities	To ensure review of the operation of the TSF and evaporation ponds.	Commitment 20 The proposal will prepare a report on the development and performance of the waste disposal facilities (i.e. TSF and evaporation ponds) after five years of operation.	EPA	New Commitment
Murrin Murrin Aboriginal Environmental Liaison Committee	To ensure community concerns are known and that community can assist with the development of suitable environmental management practices.	Commitment 21 The Murrin Murrin Aboriginal Environmental Liaison Committee will continue to meet at a frequency determined by the Committee until the Committee considers it is no longer required.	EPA	New Commitment
Significant Fauna	To Ensure the protection of significant fauna in the borefields.	Commitment 22 The proponent will undertake the construction, operation and decommissioning of the Project in a manner that minimises disturbance on Malleefowl nest in the Granite Borefield. This will be undertaken in consultation with CALM.	EPA, on advice from CALM.	New Commitment
Vegetation	To minimise the impact of the borefield operation on the surrounding vegetation.	Commitment 23 The Proponent will conduct a vegetation monitoring programme for the additional borefields from which the water for the Expansion Project will be sourced as these borefields are developed. This will be undertaken to the satisfaction of the EPA, on advice from CALM, DEP and WRC.	EPA on advice from DEP and CALM	New Commitment
Groundwater	To Minimise the impact of the borefield operation on other users in the region.	Commitment 24 The Proponent will progressively extend the groundwater monitoring programme currently being implemented at the Roy Valais Borefield to include Sullivan, Station, Charlie and Granite Borefields as they are developed. This will be undertaken in accordance with Licence Conditions and to the satisfaction of the EPA on advice from WRC and DEP	EPA	New Commitment
Rehabilitation	Optimise rehabilitation of the TSF.	Commitment 25 The Proponent will set aside an area of tailings to use for rehabilitation trials, with the aim of testing methods of rehabilitating tailings. These trials will be undertaken in consultation with DME, DEP and CALM and will commence following the selection of the final tailings storage method and production of sufficient tailings for trials.	EPA, DME	New Commitment

Issue	Objective	Commitment	To Whose Satisfaction	Status
Lakes	To minimise impacts on lake systems.	Commitment 26 The Proponent will not discharge any solid or liquid waste from the Expansion Project to into Lake Carey or any other lake system in the area.	EPA	New Commitment
Lake Carey – Fringing vegetation	To ensure that adequate information is available for the purpose of managing the Project.	Commitment 27 The Proponent will undertake further investigations to determine if <i>Halosarcia</i> "AngelFish Island" ms occurs at any additional locations within Murrin Murrin East Project Area. These investigations may be undertaken in cooperation with other mining companies' operation in the vicinity of Lake Carey.	EPA, on advice from DEP and CALM	New Commitment
Vegetation	To minimise the impact of the borefield operation on the surrounding vegetation.	Commitment 28 Prior to the borefields being developed, the Proponent will: • review the vegetation mapping for the proposed borefield areas; • identify significant vegetation communities which have the potential to be affected by groundwater drawdown; • design and implement a vegetation monitoring programme for these communities; and • develop contingency measures to minimise any impacts on these communities should the monitoring programme identify that the borefield operation is resulting in unacceptable impacts on these communities.	DEP, WRC and CALM	New Commitment
Groundwater	To maintain the Leonora town water supply.	Commitment 29 The Proponent will undertake further consultation with the Water Corporation prior to the development of the Station Creek Borefield regarding management of the potential impacts on Leonora town water supply. This consultation will be undertaken in conjunction with the WRC and the DEP, and agreement reached on the monitoring and mitigative actions to be undertaken to the satisfaction of the EPA, the WRC, and the Water Corporation.	EPA, WRC and the Water Corporation	New Commitment
Birds and bats - interaction with renewable	To ensure impacts to in flight birds and bats are mitigated and managed such that biological diversity and ecological integrity of fauna are	The proponent will implement the MMO Hybrid Renewable Energy Project – Bird and Bat Adaptive Management Plan (2025) or the most recent revision approved by the EPA	EPA and DWER	New Commitment
energy infrastructure	maintained.	on advice from the Department		

OFFICIAL

Issue	Objective	Commitment	To Whose Satisfaction	Status
		of Water and Environmental		
		Regulation (DWER).		

Abbreviations

EPA Environmental Protection Authority

DEP Department of Environmental Protection (Currently Department of Water and Environmental

Regulation)

WRC Water & Rivers Commission (Currently Department of Water and Environmental Regulation)
CALM Department of Conservation & Land Management (Currently the Department of Biodiversity

Conservation and Attractions)

DME Department of Minerals & Energy (Currently the Department of Mines, Petroleum and Exploration)

Note: text in **bold** of Schedule 2 Abbreviations and Environmental Management Commitments indicates an update made as part of Attachment 9.