

Assets | Engineering | Environment | Noise | Spatial | Waste

Surface Water Management Plan

Pilbara Regional Waste Management Facility

Prepared for Shire of Ashburton

October 2018

Project Number: TW18004

DOCUMENT CONTROL

Version	Description	Date	Author	Reviewer
0a	Internal Review	28/06/18	LW+CP	LM
1a	Draft Released to Pells Sullivan Meynink for Review	18/07/18	СР	LM
1b	Released to Client for Review	04/09/18	СР	LM
1c	Final Report	15/10/18	СР	LM

Approval for Release

Name	Position	File Reference
Ronan Cullen	Director and Waste Management Section Leader	TW18004 - Surface Water Management Plan.1c
Signature		

Jon Un

Copyright of this document or any part of this document remains with Talis Consultants Pty Ltd and cannot be used, transferred or reproduced in any manner or form without prior written consent from Talis Consultants Pty Ltd.

Table of Contents

1	Intro	troduction								
	1.1	Backgro	ound	5						
	1.2	Scope o	of Works	5						
2	Site	Descript	tion	6						
	2.1	Site Info	ormation	6						
	2.2	Environmental Attributes								
		2.2.1	Topography	6						
		2.2.2	Geology	6						
		2.2.3	Surface Water	7						
3	Loca	I Climat	e Data	8						
	3.1	Temper	rature							
	3.2	Rainfall								
		3.2.1	Short Duration Design Rainfall	9						
	3.3	Pan Eva	aporation							
	3.4	Regiona	al Flood Trends							
4	Surf	ace Wat	ter Management Strategy	12						
	4.1	Key Infr	rastructure							
		4.1.1	Perimeter Drains							
	4.2	Surface	e Water Modelling							
		4.2.1	Catchment Areas							
		4.2.2	Swale System							
		4.2.3	RORB							
	4.3	Surface	Water Infrastructure Design							
		4.3.1	Perimeter Drains							
		4.3.2	Surface Water Ponds							

		4.3.3	Other Associated Infrastructure	20					
		4.3.4	Summary	22					
	4.4	Operati	onal Management and Monitoring Strategy	23					
5	Local Flood Risk Assessment								
	5.1	Levee E	mbankment Design	24					
	5.2	Design	Review	25					
Figu	res			26					

Tables

- Table 3-1: Average Maximum and Minimum Temperatures (°C) at Onslow Airport (1940-2017)
- Table 3-2: Rainfall Overview at Onslow Airport (1940-2017)
- Table 3-3: Pan Evaporation Data for the Onslow Area in Millimetres (mm)
- Table 4-1: Summary of Catchment Areas
- Table 4-2: Key Design Considerations for Swale System
- Table 4-3: Key Design Characteristics of the Swale System
- Table 4-4: Modelling Results of the Swale System
- Table 4-5: RORB Modelling Results for Pond Storage Requirements
- Table 4-6: Design Characteristics of Surface Water Pond System
- Table 4-7: Rock Armouring Details for Swale System
- Table 5-1: Key Design Characteristics of the Levee Embankment
- Table 5-2: Minimum Rock Armouring Details for Levee Embankment

Diagrams

Diagram 3-1: Onslow Airport Rainfall from 1940 -2017

Diagram 3-2: Summary of IFD Design Curves

Diagram 4-1: Catchment Overview

Diagram 4-2: Swale Geometry

Figures

Figure 1: Locality Plan

Figure 2: Topography

Figure 3: Hydrology

Figure 4: Catchment Areas

Appendices

Appendix A : Drawings

Appendix B : RORB Modelling Results

Appendix C : Surface Water Drainage and Pond System Design Calculations

Appendix D : Culvert and Rock Armouring Design Calculations

1 Introduction

Talis Consultants Pty Ltd (Talis) was commissioned by the Shire of Ashburton (the Shire) to prepare the approval documentation for the Pilbara Regional Waste Management Facility (the Site). As part of the supporting documentation, a Surface Water Management Plan (SWMP) has been developed, summarising the assessments and strategy for managing surface water during the development, operation and closure of the Site.

1.1 Background

The Shire of Ashburton is progressing with the development of a new regional waste management facility located at Lot 150 Onslow Road, Talandji, Western Australia. With the rapid increase in industrial development and its associated growth within the Shire and Pilbara Region, there will be a significant increase in the volume of waste generated. Therefore, the Shire identified the need for the establishment of a new facility that can meet the waste management needs of Onslow and the wider Pilbara region.

The project, referred to as the Pilbara Regional Waste Management Facility (PRWMF), will provide a range of waste management services including sustainable initiatives such as reuse, recycling and recovery as well as treatment and disposal. The proposed Class IV facility and its associated infrastructure will be designed and constructed to Environmental Protection Authority (EPA) Victoria's Best Practice Environmental Management Guidelines for the Siting, Design, Operation and Rehabilitation of Landfills (August 2015) (Best Practice Landfill Standards). It will consist of a double composite lined landfill cells with leachate collection that will accept municipal solid waste and commercial waste, as well as contaminated soil and sludge (including encapsulated wastes).

1.2 Scope of Works

The SWMP contains the following scope of works:

- Site description;
- Local climate data;
- Surface Water Management Strategy;
 - Surface water management requirements;
 - Surface water generation modelling;
 - Surface water infrastructure requirements;
 - Operational management and monitoring strategy; and
- Local flood risk assessment.

2 Site Description

2.1 Site Information

The Site is located approximately 36km south of Onslow within Lot 150 Onslow Road, Talandji, which occupies an area of 434 hectares (ha). The proposed Site footprint occupies a total of approximately 70ha and is accessible from Onslow Road, which is a main road and primary distributor. The Site is located behind an approximately 3km long sand ridge and, therefore, most of the PRWMF will not be visible from Onslow Road.

2.2 Environmental Attributes

The following sections outline the key existing environmental attributes of the Site, including topography, geology and surface water, which affect the development of the surface water management system.

2.2.1 Topography

The Site is relatively flat, with a gentle slope across the sand plain towards the north-west and the Indian Ocean. The Site topography ranges from 17 to 13 metres (m) Australian Height Datum (AHD) on the lower sand plain to 40mAHD along the crest of the sand ridge. A number of surface depressions of various sizes are distributed across the sand ridge. The topography of the Site is provided in Figure 2.

2.2.2 Geology

In 2017, Talis was commissioned by the Shire to undertake a geotechnical investigation of the Site. As part of the works, a total of 112 trial pits (TP01-TP112) were excavated across the Site to assess the shallow subsurface, and to allow the collection of bulk soil samples for laboratory testing. The trial excavations described the underlying soil horizon to primarily be a SAND, with its structure described as fine to medium grained, rounded to sub rounded, dry and loose with occasional roots. It was also described as a SILTY SAND/SANDY SILT of low plasticity. This horizon is colloquially known as 'Pindan'. This horizon was encountered to a maximum depth of between 0.5m and 5m below ground level.

The conditions were recorded to be generally homogenous across the Site. Therefore, the following generalised profile has been determined for the Site:

- SAND loose, fine to medium grained (Pindan) generally corresponding to the sand dune ridge;
- Sandy clayey SILT/Silty clayey SAND loose to dense, fine to medium grained, rounded to subrounded, red brown and dry (Pindan); underlain by
- Cemented GRAVEL/SILCRETE cemented gravels in silty sand/sandy silt matrix hard, red brown and white, becoming brown with depth, and dry; underlain by
- SANDSTONE interfingered with cemented gravel medium grained, occasional clasts, siliceous veins and vugs, dry, red to yellow.

2.2.3 Surface Water

There are no surface water bodies located within the Site. The nearest surface water body identified in NationalMap is a salt lake located approximately 2.5km west from the boundary of the Site. The Site is located in between two major ephemeral watercourses. The Ashburton River is located approximately 20km south-west of the Site and the Cane River is located approximately 21km to the north-east. The Site is located within the Ashburton River Catchment Area (Figure 4). These major rivers discharge over the coastal flats towards the Indian Ocean. According to the Department of Water's 'Pilbara Regional Water Plan 2010-2030 Supporting Detail' (May 2010), these rivers are highly seasonal and variable and flow following rainfall and cyclonic activities. The hydrology and hydrographic catchments surrounding the Site are shown in Figure 3 and 4 respectively.

3 Local Climate Data

The local and regional climate data sources utilised in designing the surface water management systems at the Site, include the following:

- Pan evaporation;
- Intensity Frequency Duration
 - Design rainfall depth;
 - Design rainfall intensity;
- Areal-reduction factors;
- Storm losses; and
- Areal temporal patterns.

Historic weather data was sourced from the Bureau of Meteorology (BOM) website utilising the Onslow Airport weather station data (Station ID: 005017): <u>http://www.bom.gov.au/climate/data/</u>. The station is approximately 4 kilometres (km) from the coast and approximately 30km from the Site.

3.1 Temperature

The climate of the Onslow area is considered to be a grassland climate and arid with a hot, humid summer zone. Table 3-1 shows the mean minimum and maximum temperature at the Onslow Airport from 1940 to 2017.

Aspect	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Minimum	24.4	25.0	24.2	21.4	17.4	14.3	13.0	13.6	15.4	17.9	20.1	22.4	19.1
Maximum	36.4	36.3	36.1	33.9	29.3	26.0	25.4	27.3	30.1	32.9	34.4	35.9	32.0

Table 3-1: Average Maximum and Minimum Temperatures (°C) at Onslow Airport (1940-2017)

As shown above, the lowest minimum mean temperature for Onslow is 13.0°C during the winter months and highest maximum mean temperature is 36.4°C during the summer months.

3.2 Rainfall

Being an arid zone, the wet season for the Pilbara region occurs from December to April each year. Table 3-2 and Diagram 3-1 presents the summary of rainfall records collected from the Onslow Airport from 1940 to 2017.

Aspect	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average	38.6	61.0	72.0	11.4	48.6	45.5	20.3	8.6	1.4	0.8	2.8	3.4	314.4
90 th Percentile	112.4	179.2	248.6	28.9	111.8	111.6	51.3	30.0	2.2	1.6	4.7	6.7	540.5
Highest	275.6	358.6	374.9	163.4	236.7	230.8	115.4	81.8	24.7	15.0	60.2	54.0	1,085.1

 Table 3-2: Rainfall Overview at Onslow Airport (1940-2017)

Diagram 3-1: Onslow Airport Rainfall from 1940 -2017

The mean annual rainfall for Onslow is reported as 314.4 millimetres (mm). Regionally, the Ashburton River Catchment Area's mean annual rainfall varies from 230mm to 400mm. Mean annual rainfall trends downwards heading east from the coast and south from the Hamersley Range (approximately 150km east of the Site). Larger rainfall events are typically associated with tropical cyclones and large low pressure systems that most frequently affect the region between January and March.

3.2.1 Short Duration Design Rainfall

Rainfall Intensity Frequency Duration (IFD) data for Onslow was obtained using the BOM Computerised Design IFD Rainfall System (CDIRS) and the Australian Rainfall and Runoff 2016 database (ARR2016). CDIRS produces a complete set of IFD curves and associated weather data based on user-defined coordinates.

Table 3-1 summarises the Annual Exceedance Probability (AEP) of storms with 1 to 72 hour (hr) durations. Rare historic weather events with recurrence intervals of up to 1000 years have also been included for 24, 48 and 72hr durations. AEPs are required to estimate design flood discharges for a range of events can be found in Diagram 3-2.

	-												
Storm	1 in 10	1 in 20	1 in 50	1 in 100	1 in 200	1 in 500	1 in 1000						
Duration	10%	5%	2%	1%	0.5%	0.2%	0.1%						
Duration	Rainfall Depth (mm)												
1 hour	53.5	63.6	77.4	88.3	-	-	-						
2 hour	70	83.8	103	118	-	-	-						
3 hour	82.3	99.2	123	142	-	-	-						
6 hour	110	134	169	197	-	-	-						
12 hour	146	182	231	272	-	-	-						
24 hour	188	235	301	355	426	515	589						

Table 3-1: Summary	of Annual Fx	ceedance Pro	babilities for	Onslow Airpo	rt (ARR2016)
TUNIC 3 I. Julilling					

Storm	1 in 10	1 in 20	1 in 50	1 in 100	1 in 200	1 in 500	1 in 1000					
Duration	10%	5%	2%	1%	0.5%	0.2%	0.1%					
Duration	Rainfall Depth (mm)											
48 hour	222	278	355	419	493	592	675					
72 hour	234	291	370	436	509	609	692					

Diagram 3-2: Summary of IFD Design Curves

According to Best Practice Landfill Standards, the storage ponds and other components of the management system should be designed to contain and control surface water runoff from a 1-in-20 year storm event, at a minimum, for putrescible landfills. However, storm events up to 1-in-100 year recurrence intervals should also be considered to ensure that they do not result in any catastrophic failures such as flooding of the landfill or failure of dams or leachate storage ponds. Therefore, 1-in-100 year, 72hr storm events have been considered for the design of the surface water management infrastructure at the Site.

3.3 Pan Evaporation

The Onslow Airport weather station does not record mean daily evaporation. Therefore, monthly evaporation rates were interpolated from BOM's 1975-2005 Average Pan Evaporation Map (http://www.bom.gov.au/jsp/ncc/climate averages/evaporation/index.jsp?#maps).

The approximate average daily pan evaporation rates were calculated from the monthly rates. The pan evaporation data for the Onslow has been provided in Table 3-3.

Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Monthly	350	300	300	300	175	125	125	175	250	300	350	400	3,150
Daily Average	11.3	10.7	9.7	10.0	5.6	4.2	4.0	5.6	8.3	9.7	11.7	12.9	8.6

Table 5 51 Tall Etapolation Data for the Orision / i ca in minimet co (inin

The daily average pan evaporation ranges from 4.2mm to 12.9mm and monthly from 125mm to 400mm. The total annual pan evaporation for Onslow is reported as 3,150mm.

3.4 Regional Flood Trends

The Site is located on the Onslow Coastal Plain between two major river systems namely the Ashburton River and the Cane River. Due to the nature of the regional topography and the proximity to flowing water systems, the area around the Site could be subject to flooding either by direct rainfall or by regional overland flow. During the site selection works, a regional flood study was undertaken by Pells Sullivan Meynink (PSM) in August 2017.

The regional flood study included regional and local hydrologic and hydraulic analysis which covered:

- Rainfall runoff modelling of the Ashburton River catchment;
- Flood frequency analysis of the Ashburton and Cane river stream flow gauges;
- Regional methods of peak flow estimation;
- Hydraulic modelling of the Onslow Coastal Plain in the region downstream of the Ashburton and Cane River stream flow gauges;
- High spatial resolution hydraulic modelling of the area around the Site, supported by a topographic survey; and
- Sensitivity testing of selected model parameters.

The assessment concluded that regionally direct rainfall and local runoff is responsible for the largest flows impacting the Site. It was also established that flows from the Ashburton River were capable of reaching the Site but not from the Cane River. The south-western half of the Site was affected by significant upstream flows. However, a lack of defined surface channels resulted in shallow, low velocity (typically less than 0.5m/s) flow even during significant weather events.

Based on the conclusions from the flood study, it was recommended that surface water management infrastructure include drainage and flood protection designs.

As a result of the study, along with some other key engineering design considerations, the development footprint for the landfill at the Site was re-located adjacent to the pindan sand ridge line, which experienced minimal to no risk of flooding.

4 Surface Water Management Strategy

The surface water management strategy for the Site will closely align with Best Practice Landfill Standards, with the surface water management infrastructure designed to manage and control rainfall runoff from 1-in-100 year 72hr storm events. The infrastructure for the surface water management system will include attenuation/infiltration ponds, a levee embankment and perimeter drains around the Site.

The following sections detail the key infrastructure components and their design to ensure that surface water is appropriately collected, stored and/or diverted based on the regional weather records.

4.1 Key Infrastructure

4.1.1 Perimeter Drains

Perimeter drains in the form of trapezoidal open channel swales will be utilised to effectively transport runoff within the Site to collection points for attenuation, infiltration or diversion off-site. The swale system is critical to minimise the generation of leachate, increase control over erosion, and mitigate the risk of localised flooding. The ultimate design of the system incorporated the restoration profile of the landfill after its closure to ensure that the system can appropriately manage surface water during the closure and aftercare period of the landfill.

4.2 Surface Water Modelling

To determine the appropriate design for the proposed surface water management infrastructure, modelling was undertaken utilising a Microsoft Excel surface water pond and swale sizing algorithm initially and further defined through Runoff Routing software (RORB). RORB is a general runoff and streamflow routing program used to calculate flood hydrographs from rainfall and other inputs for urban and rural applications. RORB subtracts rainfall losses due to ground seepage to determine the route of excess surface water through the model.

4.2.1 Catchment Areas

To assist modelling, the Site was split into sub-catchment areas, with the Site divided into four subcatchments based on topographical data, the design of the landfill and other supporting infrastructure. The catchment area are illustrated in Diagram 4-1 and are labelled as the following:

- 1: Northern Catchment;
- 2: North-eastern Catchment;
- 3: Southern Catchment; and
- 4: Landfill Catchment.

Diagram 4-1: Catchment Overview

The Southern Catchment area excluded the leachate and surface water ponds to reflect postdevelopment of infrastructure. These areas are depicted in white in Diagram 4-1, and account for a minor reduction in potential runoff from the catchment area. The Landfill Catchment assumes the full restored landfill profile after operations are complete. Only the surface water from the Landfill Catchment will contribute to the surface water attenuation and infiltration pond system. The surface water from the three remaining catchments will be diverted directly from the Site through the use of the perimeter drains.

Catchment	Catchment Area (ha)
1: Northern	5.937
2: North-eastern	13.262
3: Southern	35.920
4: Landfill	19.020
Total	74.139

Table 4-1: Summary of Catchment Areas

The catchment areas identified in Table 4-1 are utilised to calculate the capacity of the surface water ponds and the swale system across the Site.

4.2.1.1 Runoff Coefficient

The site geology (as discussed in Section 2.2.2) consists of Pindan sand soil horizons.

While a runoff coefficient value of 0.1 would be acceptable for vegetated sands of a similar grading, Pindan sand is highly variable and can display self-cementation properties which can result in an increased runoff despite a vegetated and irregular terrain. Therefore, for the purpose of the calculations the runoff coefficient for the each of the catchments is assumed to be 0.40.

4.2.1.2 Kerby's Roughness Factor

With regards to Kerby's roughness factor, the description of the area is considered to be smooth bare soil, therefore for the modelling works a roughness factor of 0.10, has been utilised. This is a conservative value that simulates a worst-case scenario. It essentially means that as the surface water travels across the catchment area to the swale its velocity is not slowed down by the roughness of the surface.

4.2.2 Swale System

The Microsoft Excel spreadsheet algorithm uses the Kerby-Kirpich Method to determine the flow rate of the surface water through the swale system during a specified rainfall event. In order to use this method, the movement of the surface water through the swale system has been conceptualised with the key components of the swale system outlined in the following sub-sections.

4.2.2.1 Kerby-Kirpich Method

The swale system was designed using a Microsoft Excel algorithm modelled after the Kerby-Kirpich method to estimate the watershed time of concentration (t_c) for a rainfall event. The method requires adding the overland flow time (Kerby, t_{ov}) to the channel flow time (Kirpich, t_{ch}) in order to obtain the time of concentration. The following equations were utilised to determine the time of concentration:

$$t_c = t_{ov} + t_{ch}$$
 Eq. 1

$$t_{ov} = 1.44 \times (L \times N)^{0.467} \times S^{-0.235}$$
 Eq. 2

where	L = Length of overland flowN = Kerby's roughness coefficient, 0.10S = Slope gradient of the overland flow	
	$t_{ch} = 0.0195 \times L^{0.770} \times S^{-0.385}$	Eq. 3
where	L = Length of swale flow S = Slope gradient of the swale flow	

Once the time of concentration has been determined, then the theoretical peak flow rate through each swale can be calculated and compared to the maximum allowable flow rate through the swale as determined by the design geometry of the swale. If the maximum allowable flow rate is greater than the theoretical peak flow rate, then the design of swale has passed. The following equations were utilised to perform this design check:

$$Q_t = C \times I \times A$$
 Eq. 4

where Q_t = Theoretical peak flow rate, m³/hr

C = Runoff coefficient, 0.40

I = Rainfall intensity at time of concentration, m/hr

 $A = Catchment surface area, m^2$

$$V = 1/n \times R_h^{2/3} \times S_s^{1/2}$$
 Eq. 5

V = Velocity of surface water through the swale where *n* = Manning's coefficient R_h = Hydraulic radius S_s = Slope of swale

$$Q_a = V \times A_s$$
 Eq. 6

where

 Q_a = Maximum allowable flow rate, m³/hr V = Velocity of surface water through the swale, m/hr A_s = Cross-sectional area of the swale, m²

4.2.2.2 Surface Water Movements

A series of catch drains/swales for clean and potentially 'dirty' water systems will be constructed around the facility to enable the effective management of surface water. The surface water movement/interaction between the swales and Site infrastructure/roads is discussed as follows.

A swale will be constructed around the south-eastern boundary of the landfill development footprint. The swale will direct potentially 'dirty' water into the surface water attenuation pond and infiltration/evaporation pond system. A Site access road will cross over the discharge channel to the surface water ponds and will therefore require a culvert to be constructed.

The North-eastern Catchment swale will direct clean flow south eastwards towards the Southern Catchment swale. To enable discharge into the Southern Catchment swale, a culvert will be required under the main Site access road and the southern bushfire control access road.

The Southern Catchment swale will be constructed along the entire interior perimeter of the levee embankment, and discharge into the sand plain north-west of the Site. Any overflow from the Infiltration/Evaporation Pond #2 will also connect into the swale to direct water offsite. The southern bushfire control access road will cross the offsite discharge swale and will require the installation of a culvert.

The Northern Catchment swale directs surface water flow north-westerly around the perimeter of the landfill development footprint then westerly towards the junction with the Southern Catchment swale. At this point, the surface water will be allowed to flow offsite into the regional sand plain. In addition, the overflow from Infiltration/Evaporation Pond #1 will connect to the swale. Therefore, scour protection measures will be required at these two junction points. The Site access road will also cross over the swale.

4.2.2.3 Manning's Coefficient

Manning's coefficient describes the roughness of the swale surface, which is determined by the material used to construct the swale. The following Manning's coefficients (n) would be considered for the swale system:

- Unlined earth channel: 0.022;
- Bottom and sides lined with riprap: 0.035; and
- Bottom and sides lined with HDPE plastic: 0.009.

4.2.2.4 Swale System Design Summary

A summary of the swale system's design considerations is provided in Table 4-2.

Location	Swale Section		Manning's Coefficient	Average Gradient	Other Key Considerations
Northern Catchment	А	Unlined	0.022	0.009	• Two junction points
	B- Inclined	Lined- Riprap	0.035	0.053	 Two junction points Two intersection points with a Site access road
	С	Unlined	0.022	0.002	with a site accession
NL	А	Unlined	0.022	0.017	• One junction point
North- eastern	B- Inclined	Lined- Riprap	0.035	0.039	One intersection point with a Site access road
Catchinent	С	Unlined	0.022	0.002	with a site accession
Southern Catchment	A	Unlined	0.022	0.001	 Three junction points A significant bend in the beginning section of swale One intersection point with a Site access road
Landfill Catchment	A	Lined-HDPE	0.009	0.002	 One junction point One intersection point with a Site access road

Table 4-2: Key Design Considerations for Swale System

Note: If a section of the swale has a slope gradient greater than 0.020, then it is classified as 'inclined'.

These will be key inputs into the Microsoft Excel algorithm as well as the RORB modelling software.

4.2.3 RORB

4.2.3.1 Data Files

In order to use RORB effectively, region specific modelling files that summarise the weather data for Onslow was obtained from the Australian Rainfall & Runoff (ARR) Data Hub. The following files were downloaded and inputted into RORB:

- Areal Reduction Factors (ARFs) and losses;
- Temporal Patterns; and
- BOM IFD data.

For consistency, the coordinates used to obtain these files were the same coordinates for the Onslow Airport weather station (Station ID: 005017).

4.2.3.2 Initial and Continuing Losses

Instead of using runoff coefficients and Kerby's roughness factor, the RORB program uses Initial Loss (IL) and Continuing Loss (CL) to represent the infiltration and excess of surface water during a rainfall event. IL denotes the infiltration of rainfall during the initial stages of a rainfall event before runoff begins. CL denotes the continued average infiltration of rainfall per hour during the remaining rainfall event.

For arid regions, IL range from 10mm to 60mm and CL range from 1mm/hr to 5.5mm/hr. However, the PSM flood study utilised IL values ranging from 30 to 60 mm, with a fixed CL of 6 mm/hr. For consistency, the RORB modelling performed to dictate the design of the swale and surface water pond systems utilised the same values for IL. In order to assess the sensitivity to continuing loss, a CL of 3mm/hr was also modelled.

4.2.3.3 Surface Water Pond Capacity

For further analysis of the surface water pond system requirements, RORB was implemented using the software's built-in storage-discharge relationship for a storage pond utilising the following equation:

$$S = kQ^m$$
 Eq. 7

where $S = \text{Storage volume, m}^3$ k = dimensionless empirical coefficient based on the catchment area $Q = \text{Discharge into the storage system, m}^3/\text{s}$ m = unit-less cross-sectional shape factor, 0.80

The value of k can be user defined or calculated by the RORB program. For the purposes of this report, the value of k calculated by the RORB program will be adopted. The results from RORB will be used to ensure that the surface waste pond system meets the minimum requirements for managing rainfall from a 1-in-100 year, 72hr duration storm events under various IL and CL conditions.

4.3 Surface Water Infrastructure Design

The following sections describe the modelling results and the finalised design characteristics of the key infrastructure proposed for the Site's surface water management strategy.

4.3.1 Perimeter Drains

The perimeter drains will be trapezoidal open channel swales and constructed along the lowest boundary of each catchment. Diagram 4-2 provides an illustration of the cross-sectional area of the swale.

Diagram 4-2: Swale Geometry

Based on the geometry depicted in Diagram 4-2, Table 4-3 provides the corresponding values for each of the different swale designs.

Location	Design No.	[1:S] Side Slope (V:H)	[b] Bottom Width (m)	[T] Top Width (m)	[h] Height (m)
Northorn Catchmont	1	1:6	2	14	1
Northern Catchinent	2	1:6	4	16	1
North-eastern	1	1:6	2	14	1
Catchment	2	1:3	2	8	1
Southern Catchment	1	1:6	4	16	1
Landfill Catchment	1	1:6	3	15	1

Table 4-3: Key Design Characteristics of the Swale System

Note: The swales that are part of the surface water pond system have the same design as the Landfill Catchment swale.

The height of the water was modelled to only reach to an approximate height of 0.5m as a conservative measure to allow for an approximate 0.5m freeboard.

These swale designs will be required to accommodate flow rates generated in 1-in-100 year, 72hr duration storm events. The Microsoft Excel algorithm using the Kerby-Kirpich Method and the RORB program were used to determine whether these are acceptable swale designs.

4.3.1.1 Initial Modelling

Table 4-4 outlines the checks performed using the Microsoft Excel algorithm and the Kerby-Kirpich Method. The calculations have been provided in Appendix C.

Location	Swale Design	Swale Section	<i>Q_t</i> (m³/hr) [Eq. 4]	V (m/s) [Eq. 5]	<i>Q_a</i> (m³/hr) [Eq. 6]	Check Q _t < Q _a
	1	А	2,814	1.95	17,552	Pass
Northern Catchment	1	В		3.01	27,119	Pass
	2	С		0.93	11,751	Pass

Table 4-4: Modelling Results of the Swale System

Location	Swale Design	Swale Section	<i>Q_t</i> (m³/hr) [Eq. 4]	V (m/s) [Eq. 5]	<i>Q_a</i> (m³/hr) [Eq. 6]	Check Q _t < Q _a
	1	А		2.74	24,650	Pass
North-eastern Catchment	1	В	7,180	2.59	23,321	Pass
catemient	2	С		0.99	7,318	Pass
Southern Catchment	1	А	11,681	0.87	12,577	Pass
Landfill Catchment	1	А	8,391	2.17	23,441	Pass

Note: Q_t is the theoretical peak flow rate that the swale would need to manage.

V is the maximum velocity of the water through the swale.

 Q_a is the maximum allowable flow rate that the swale can manage while maintaining an approximate 0.5m freeboard. The swales for the surface water pond system were not directly modelled as the flow characteristics are assumed to be similar to the flow characteristics for the Landfill Catchment.

All of the swale designs are acceptable for managing the surface water as it passes through the various sections of the swale system.

4.3.1.2 RORB Modelling

For the RORB model, the key characteristics of each catchment including the breakdown of the swale design were recorded in the RORB program. However, the resulting peak flow rates were vastly lower than the ones calculated using the Microsoft Excel algorithm. Therefore, the peak flow rates calculated in the initial modelling were the adopted flow rates used in the final design of the swale system as provided in Table 4-3.

4.3.2 Surface Water Ponds

4.3.2.1 Initial Modelling

The surface water pond sizing was initially conducted using a simple Microsoft Excel algorithm. According to the IFD data from BOM, the total rainfall during a 1-in-100 storm with a 72hr duration is 436mm. Based on the surface area of the Landfill Catchment and an assumed runoff coefficient of 0.40, the minimum total capacity required is approximately 33,500m³. The rainfall that falls directly into the swales is considered negligible.

4.3.2.2 RORB Modelling

The catchment features and swale system were inputted into the RORB model for the Landfill Catchment. The model was then run under various IL and CL conditions, and considered both 3.0mm/hr and 6.0mm/hr for CL, as well as IL values between 30mm and 60mm, in line with the PSM flood study. A summary of the results of the RORB analysis can be found in Table 4-5 and the detailed calculations are provided in Appendix B.

Model Iteration	IL (mm)	CL (mm/hr)	Inflow (m³)
1	60	6.0	22,700
2	60	3.0	39,100
3	50	6.0	24,300
4	50	3.0	40,800
5	40	6.0	25,800
6	40	3.0	42,400
7	30	6.0	25,900
8	30	3.0	42,500

Table 4-5: RORB Modelling Results for Pond Storage Requirements

In all four iterations with a CL of 6.0mm, the inflow volumes did not exceed 30,000m³, whereas for iterations with a CL of 3.0mm, the inflow volumes were up to 42,500m³. The results utilising a CL of 3.0mm are higher than what is calculated in the Microsoft Excel modelling. Therefore, to allow for conservativism and redundancy in the surface water management system, the highest inflow volume of 42,500m³ was adopted for the design of the surface water ponds.

4.3.2.3 Surface Water Pond Design Characteristics

Table 4-6 contains the dimensions of the surface water pond system that will accommodate the operational requirements determined in the initial modelling.

Type of Pond	Length (m)	Width (m)	Depth (m)	Internal Pond Side Slope (V:H)	Surface Area (m²)	Operational Volume (m ³)
Attenuation Pond	163.6	88.6	3.42	1:3	14,495	34,620
Infiltration/ Evaporation Pond # 1	91.0	71.0	1.76	1:3	6,461	5,611
Infiltration/ Evaporation Pond # 2	91.0	71.0	1.76	1:3	6,461	5,611

Table 4-6: Design Characteristics of Surface Water Pond System

Notes: * *The Operational Volume is calculated from the 0.5m freeboard level to the bottom level of each pond.*

The total operational volume of the surface water pond system is approximately 45,842m³. To ensure that no superficial surface water flows into the surface water pond system, each pond will be raised 0.5m above existing ground with 1:6 (V:H) external side slopes.

4.3.3 Other Associated Infrastructure

4.3.3.1 Rock Armouring

To mitigate scouring and maintain the integrity of the swale system, rock armouring will be installed in strategic points across the system, specifically at steeper sections (slope gradient >0.020), junction

Minimum

225

225

112.5

112.5

75

75

and intersection points. The methodology for determining the minimum stone diameter used in the rock armouring and thickness of the armouring itself is outlined in Austroads Guide to Road Design Part 5B: Drainage – Open Channels, Culverts and Floodways. The maximum velocity in each swale section has already been calculated using the Microsoft Excel algorithm. Table 4-7 outlines the proposed rock armouring details for the swale system, and the calculations are provided in Appendix D.

Bed Velocity Stone Diameter Maximum Location Velocity (m/s) (m/s) (mm) Thickness (mm) Northern Catchment 3.01 2.107 150 North-eastern 2.77 150 Catchment 1.939

Table 4-7: Rock Armouring Details for Swale System

Notes: The Maximum Velocity is the maximum velocity of the surface water through any part of the swale for the specified catchment. The Bed Velocity is 0.70 times the Velocity through the swale.

The Minimum Thickness of the rock armouring is 1.5 times the largest stone diameter.

0.87

2.17

Any rock armouring that is required for swales within the surface water pond system will have the same details as the rock armouring for the Landfill Catchment.

0.609

1.519

It is proposed that rock armouring for the Northern, North-eastern and Southern Catchment, swales, will have a minimum thickness of 225mm with a minimum stone diameter of 150mm. Rock armouring will need to be installed on junction points and on either end of the culverts.

For the Landfill Catchment swale, the rock armouring at the junction point with the inlet into the surface water pond system must have a minimum thickness of 112.5mm with a minimum stone diameter of 75mm.

The locations of proposed rock armouring and details are shown on Drawings G-100, G-101, G102 and G-103, which are provided in Appendix A.

4.3.3.2 Culvert System

Southern Catchment

Landfill Catchment

There are five intersection points where a site access road crosses over the swale system. In order to manage these intersection points, a culvert system is required to safely divert the surface water under the access roads. A Factor of Safety of at least 1.5 at the inlet was selected to account for partial blockages and silt build-ups, prior to maintenance/clearing.

The methodology presented in Section 3 of the Austroads Part 5B: Drainage – Open Channels, Culverts and Floodways Design Manual, in conjunction with the box culvert nomographs contained in Appendix B, was applied. The detailed calculations have been provided in Appendix D of this Report.

Where the system constricts from a trapezoidal channel to a rectangular culvert and then back to a trapezoidal channel, the Froude number for the upstream and downstream conditions was calculated to determine if a hydraulic jump was likely to occur. A hydraulic jump arises when supercritical flow (Froude number is greater than 1) representing fast, high energy flow transitions to subcritical flow

(Froude number less than 1). This event can cause significant erosion and scouring issues over time. The maximum Froude number calculated using the Microsoft Excel algorithm was 0.27.

It was determined that the culvert required for Intersection Points #1, #3 and #4 is a set of 4 box culverts that have an operational height of 0.9m and an operational width of 4.8m. For Intersection Point #2, a set of 8 box culverts with an operational height of 0.9m and an operational width of 9.6m will be required. Intersection Point #5 will require a set of 3 box culverts installed with an operational height of 0.9m and an operational width of 3.6m.

4.3.4 Summary

4.3.4.1 Swale System

In order to determine the design of the swale system, several considerations need to be made. Each swale is to be placed at the topographical low point of each catchment area. For sections of the swale that have a slope gradient greater than 0.020, the bottom and sides of the swale will be lined with riprap, or rock armouring, in order to slow the velocity of the water moving through the swale. This will assist to mitigate scouring or erosion issues and maintain the integrity of the swale system. Where a steeper section of swale is followed by a relatively flat slope gradient (less than 0.020), then an additional 25m of the swale will be lined with riprap to mitigate scouring. If the swale has a significant bend, then riprap will be placed along the length of that bend. As per Best Practice Landfill Standards, the swale along the landfill catchment will be lined with a geomembrane liner. All other sections of the swale system will be an unlined earth channel.

At junction points where the surface water from two swales is combined, scour protection measures in the form of rock armouring will be required. At the intersection points between the swale system and a Site access road, a box culvert system will be required to direct the water under the road.

The details for the swale system are illustrated in Drawings G-101, G-102 and G-103, which are provided in Appendix A.

4.3.4.2 Surface Water Ponds

The perimeter drains along the landfill footprint will divert surface water into the surface water pond system, which will consist of a lined attenuation pond and eventually two unlined infiltration/evaporation ponds. The attenuation pond is designed to minimise the release of sediment eroded from the landfill catchment to the downstream environment. The pond will be relatively deep to encourage sedimentation before it feeds the excess surface water into one of two infiltration/evaporation ponds. Only one infiltration/evaporation pond as the Site activities and development footprint increases. The infiltration ponds will have shallow depths and large surface areas to assist the rate of evaporation.

Cargo netting/roped egress points will be installed on the interior face of each lined pond which will also be enclosed by a 1.8m high chain-link fence as a health and safety measure.

The infiltration ponds will also be constructed with overflows to enable controlled discharge of water from storm events above the 1-in-100 year, 72hr storm durations.

The layout of the surface water pond system is demonstrated in Drawing G-100, which has been provided in Appendix A.

4.4 Operational Management and Monitoring Strategy

To ensure environmental impacts are mitigated and the facility meets licence requirements, appropriate operational management, especially for surface water, must be undertaken. Regular site maintenance and repairs of drains and other associated surface water management infrastructure will be undertaken. Site staff will particularly inspect the system for evidence of contamination, excessive sedimentation and structural integrity of the system on a regular basis. Any ponding within the surface depressions along the sand ridge northeast of the landfill development footprint will be managed via a mobile pump when necessary. Further details of the operational management strategy are provided in the Site's Operational and Environmental Management Plan (OEMP).

5 Local Flood Risk Assessment

The PSM flood study concluded that the Site could be potentially affected by flooding in the surrounding areas. To protect the Site from such events, it is proposed that a levee embankment will be constructed along the southern boundary of the Site. Where the outside edge of the levee embankment is likely to be effected by flooding, rock armouring will be installed to protect the embankment from erosion and scouring caused by the regional flooding events.

5.1 Levee Embankment Design

The levee embankment will be constructed along the southern boundary of Site's operational area to protect the Site from regional flooding events. The levee will be constructed from compacted soil excavated from the Site, and be compacted to a minimum of 95% Maximum Modified Dry Density (MMDD). The embankment will be keyed into the existing ground profile along the centreline and outer toe of the bund. Table 5-1 provides a summary of the key design characteristics of the proposed levee embankment.

Table 5-1: Key Design Characteristics of the Levee Embankment

Outer External	Maximum Bottom	Maximum Top	Length	Height	Volume of Soil
Side Slope (V:H)	Width (m)	Width (m)	(m)	(m)	Required (m ³)
1:6	20	2	1600	2	~34,300

Rock armouring will be utilised on the outside edge of the levee embankment for scour prevention and erosion resistance from regional flooding events.

According to the PSM flood study, the Site experiences low velocity (typically less than 0.50m/s) flow at less than one metre depths even during significant weather events, due to a lack of defined surface channels. The methodology for determining the minimum stone diameter used in the rock armouring and thickness of the armouring itself is outlined in Austroads Guide to Road Design Part 5B: Drainage – Open Channels, Culverts and Floodways, specifically Figure 2.22. Using the PSM flow velocity, Table 5-2 provides a summary of the minimum rock armouring requirements for the levee embankment system.

Table 5-2: Minimum Rock Armouring Details for Levee Embankment

Bed Velocity (m/s)	D₅₀ Stone Diameter (mm)	Minimum Thickness (mm)
0.50	50	75

The minimum thickness of the rock armouring for the levee embankment system is 75mm, using a minimum stone size of 50mm in diameter. Calculations are presented in Appendix D.

In order to protect the integrity of the development area and allow for regional flood events above the modelled scenario, a Factor of Safety of 3.5 has been applied to the flow velocity. It is therefore proposed that rock armouring to the levee embankment will consist of a separation geotextile, 150mm granular filter layer and 225mm minimum thickness of well graded riprap (125mm maximum

stone diameter), placed to a height of up to 1.5m. Typical levee embankment construction details are shown on Drawing G-103.

5.2 Design Review

PSM has undertaken a review of the surface water management design, and updated the regional flood study model. With regards to the levee embankment, the proposed design was assessed against a number of flood events, including 1 in 50 year, 1 in 100 year and 1 in 500 year for durations of 24 hours.

The surface water review and flood modelling by PSM is included in Appendix E.

A summary of the PSM modelling and review is presented as follows:

The levee embankment does not overtop at any point for any of the flood events, with the freeboard to the top of the flood protection bund [levee embankment] in excess of 0.5m for all modelled events. "Additionally, the velocity adjacent to the flood protection bund [levee embankment] is below 2m/s (i.e. the typical erosional threshold presented in the Austroads Guide to Road Design), with velocities typically less than 0.3m/s at the southern toe of the flood protection bund [levee embankment]."

Further, the PSM report states:

"Whilst optimisation of the flood protection bund [levee embankment] could be possible the current design is still recommended:

- The additional freeboard allows some flexibility if a more extreme design event were required by the regulator, and
- Whilst the velocity of the flood flow is typically less than 0.3 m/s the rip-rap protection provided, will help protect against scour and erosion in small scale localised velocity hotspots (which have not been picked the hydraulic modelling with a 10m grid size) and improve the assets longevity. Provision of rip-rap protection along the entire flood protection would be useful and is recommended for the segment to the east of 317,000 mE."

Rock armouring will, therefore, be placed on the outside edge of the levee embankment at a minimum from 317,000 mE, (eastwards to the site access road), for scour prevention and erosion resistance from regional flooding events.

Figures

Appendix A: Drawings

. All levels refer to Australian Height Datum.

DO NOT SCALE, use figured dimensions only, doubt please contact Talis Consultants.

07.05.18

No. Date

Staff.

ISSUED FOR CLIENT COMMENT

Amendment / Issue

App.

.

www.talisconsultants.com.au

WASTE MANAGEMENT

Level 1 660 Newcastle Street, Leederville WA 6007 PO Box 454, Leederville WA 6903

delivering solutions

T: 1300 251 070

225mm RIPRAP (150mm MAX. STONE DIAMETER) ON 150mm FILTER LAYER (SEPERATION GEOTEXTILE BETWEEN)

PRELIMINARY ONLY NOT FOR CONSTRUCTION

	Drawn by:	MH	Job No: ⊤	W17053
	Checked by:	СР	File No: ⊤W	17053-C-112
SWALE SECTION DETAILS	Approved by:		Drg. No:	Rev:
SWALL SECTION DETAILS	Scale: NTS		C-112	Α
	Date: 20).07.18		

Appendix B: RORB Modelling Results


```
Pond Storage_30IL_3CL
 RORBWin Output File
 ****
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 28 Aug 2018 12:59
 Vector_file
                      : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage.catg
Storm file :\\server\talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage_dr16ari7.stm
 Output information: Flows & all input data
 Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no.
             7
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
 Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                 24
 End of hyeto/hydrographs:
                                 24
 Duration of calculations:
                                 70
 Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
```

```
Page 1
```

16

0.4

17	5.2
18	0.7
19	0.0
20	0.0
21	0.1
22	2.3
23	5.3
Total	100.0

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	5	Route hydrograph thru normal storage 4
6	4	Add h-graph ex step 3 to h-graph ex step 5
7	16.0	Route thru existing storage, Pond
8	0	**************End of control vector**********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
Α	1.61E-01	6.25E-01
В	2.90E-02	3.20E-01

Total 1.900E-01

For whole catchment ; Av. Dist., km* = 0.58 For interstation area 1; Av. Dist., km* = 0.58; ISA Factor = 1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	slope
no.	km*	time		percent
1	0.1	0.190	Natural	
2	0.5	0.242	Lined	0.167
3	0.1	0.182	Natural	
4	0.2	0.018	Lined	6.772

* or other function of reach properties related to travel time

Special storage data

Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, [.] Time	in time inc. Sub-	following	time	shown
Catch Incs ment	Area A B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Tot.436.0 Pluvi. ref. no	436 436 . 1 1			

Raint Time	fall-excess,	mm, Su	in b-	time	inc.	following	time	shown
Incs	Catch ment	Ar A	ea B	;				
0 1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 16 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 10 11 12 13 14 5 16 7 10 11 12 111 12 11 11	$\begin{array}{c} 0.0\\ 34.3\\ 10.4\\ 33.6\\ 6.0\\ 11.7\\ 19.9\\ 11.7\\ 70.7\\ 38.7\\ 2.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 13.6\\ 0.0\\ 0.0\\ 0.0\\ 1.0\\ 14.2 \end{array}$	0 34 10 34 6 12 20 12 71 39 3 0 0 0 0 0 0 0 14 0 0 0 1 14	$\begin{smallmatrix} & 0 \\ 34 \\ 10 \\ 34 \\ 6 \\ 12 \\ 20 \\ 71 \\ 39 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 14 \\ 14$					
Tot.2	268.8	269	269)				

Routing results: Area4 Area4: 72 hour 1% Design Storm DESIGN run no. 1 0.90 m = 0.80Parameters: kc = Loss parameters Initial loss (mm) Cont. loss (mm/h) 30.00 3.00 Results of routing through special storage Pond with ks = 0.8289E+02 & ms = 0.74Peak elevation exceeds max. of elev.-stor. table, 3.00 Peak outflow = $0.07 \text{ m}^3/\text{s}$ 4.25E+04 m³ Peak storage = *** Special storage : Pond Hydrograph Outflow Inflow Peak discharge,m³/s 0.072 1.040 Time to peak,h 27.0 33.0 Volume, m³ 3.25E+04 5.18E+04 Time to centroid,h 100. 26. Lag (c.m. to c.m.),h 76.3 2.5 Lag to peak, h 9.59 3.59 Hydrograph summary Description Site Special storage : Pond - Outflow 01 Pond - Inflow 02 Special storage : Hyd0001 Hyd0002 Inc тіme 0.0000 0.0000 1 3.00 2 3 0.0000 6.00 0.0000 9.00 0.0015 0.4604 4 5 0.3651 12.00 0.0061 15.00 0.0114 0.3876 6 7 18.00 0.3402 0.0170 0.0200 0.0237 0.0411 21.00 8 24.00 0.4139 0.2005 9 27.00 0.0290 10 30.00 0.0410 1.0403 11 33.00 0.0621 0.9304 12 36.00 0.0719 0.0151 13 39.00 0.0708 0.0350 14 42.00 0.0695 0.0000 15 45.00 0.0000 0.0678 16 48.00 0.0662 0.0000 0.0646 17 51.00 0.0000 54.00 18 0.0631 0.0000 19 57.00 0.0636 0.1730 0.0653 0.0979 20 60.00 21 63.00 0.0649 0.0000 22 66.00 0.0634 0.0000 23 24 25 69.00 0.0619 0.0000 0.0606 72.00 0.0103 75.00 0.0616 0.1934 26 27 0.0943 78.00 0.0635 81.00 0.0631 0.0000 28 29 0.0616 84.00 0.0000 0.0602 87.00 0.0000 90.00 30 0.0588 0.0000 0.0574 31 93.00 0.0000 32 96.00 0.0561 0.0000 0.0000 33 99.00 0.0548 34 102.00 0.0536 0.0000 105.00 35 0.0524 0.0000

36 37 38 39	108.00 111.00 114.00 117.00	$0.0512 \\ 0.0501 \\ 0.0490 \\ 0.0479$	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000$
40	120.00	0.0468	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000$
41	123.00	0.0458	
42	126.00	0.0448	
43	129.00	0.0439	
44	132.00	0.0429	0.0000
45	135.00	0.0420	0.0000
46	138.00	0.0411	0.0000
47 48 49 50	141.00 144.00 147.00 150.00	0.0394 0.0386 0.0378	0.0000 0.0000 0.0000 0.0000
51	153.00	0.0370	0.0000
52	156.00	0.0363	0.0000
53	159.00	0.0355	0.0000
54	162.00	0.0348	0.0000
55	165.00	0.0341	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000$
56	168.00	0.0334	
57	171.00	0.0327	
58	174.00	0.0321	
59	177.00	0.0315	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000$
60	180.00	0.0308	
61	183.00	0.0302	
62	186.00	0.0296	
63	189.00	0.0291	0.0000
64	192.00	0.0285	0.0000
65	195.00	0.0280	0.0000
66 67 68 69	201.00 204.00 207.00	0.0274 0.0269 0.0264 0.0259	0.0000 0.0000 0.0000 0.0000
70	210.00	0.0254	0.0000
71	213.00	0.0250	

```
Pond Storage_30IL_6CL
 RORBWin Output File
 ******
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 27 Jun 2018 13:05
Vector_file
                     : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Storm Water\RORBwin\New Catchments\Area 4
Simulation\Area4.catg
                       \\SERVER\Talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
 Storm file
Approval Documentation\Data\Storm Water\RORBWin\New Catchments\Area 4
Simulation\Area4_dr16ari7.stm
 Output information: Flows & all input data
Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no. 21
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                24
 End of hyeto/hydrographs:
                                24
 Duration of calculations:
                                70
Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
    16
            0.4
```

17 18 19 20 21 22 23	5.2 0.7 0.0 0.0 0.1 2.3 5.3	
Total	100.0	

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	4	Add h-graph ex step 3 to h-graph ex step 4
6	5	Route hydrograph thru normal storage 4
7	3	Store hydrograph from step 6; reset hydrograph to zero
8	1	Add sub-area 'C' inflow & route thru normal storage 5
9	4	Add h-graph ex step 7 to h-graph ex step 8
10	5	Route hydrograph thru normal storage 6
11	3	Store hydrograph from step 10; reset hydrograph to zero
12	1	Add sub-area 'D' inflow & route thru normal storage 7
13	4	Add h-graph ex step 11 to h-graph ex step 12
14	5	Route hydrograph thru normal storage 8
15	3	Store hydrograph from step 14; reset hydrograph to zero
16	1	Add sub-area 'E' inflow & route thru normal storage 9
17	4	Add h-graph ex step 15 to h-graph ex step 16
18	3	Store hydrograph from step 17; reset hydrograph to zero
19	1	Add sub-area 'F' inflow & route thru normal storage 10
20	4	Add h-graph ex step 18 to h-graph ex step 19
21	16.0	Route thru existing storage, Pond
22	0	*************End of control vector**********

Sub-area data

Sub ui	cu ducu	
Sub-	Area	Dist.
area	km²	km*
А	2.80E-02	6.98E-01
В	2.80E-02	5.36E-01
С	2.80E-02	3.74E-01
D	2.80E-02	2.12E-01
Е	2.80E-02	1.00E-01
F	2.80E-02	5.00E-02

Total 1.680E-01

For	whole catchment	; Av. Dist., l	<m* =<="" th=""><th>0.33</th><th>1 000</th></m*>	0.33	1 000
Fot.	Interstation area	I; AV. DIST., I	<m^ =<="" td=""><td>0.33; ISA Factor =</td><td>1.000</td></m^>	0.33; ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
no.	km*	time		percent
1	0.1	0.152	Natural	-
2	0.2	0.265	Unlined	0.149
3	0.1	0.152	Natural	
4	0.2	0.265	Unlined	0.149
5	0.1	0.152	Natural	
6	0.2	0.265	Unlined	0.149
7	0.1	0.152	Natural	
8	0.2	0.265	Unlined	0.149
9	0.1	0.163	Unlined	0.149
10	0.1	0.152	Natural	

Special storage data

Area4 DESIGN Run Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, ir Time	n time Su	e ind ub-	c. fo	0110	wing	time	shown
Catch Incs ment	A A	rea B	С	D	E	F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 412 33 00 23 30 01 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	
Tot.436.0 Pluvi. ref. no.	436 1	436 1	436 1	436 1	436 1	436 1	

Rain	fall-excess,	mm,	in [.]	time	inc.	fol	lowing	time	shown
Time		Su	b-				-		
	Catch	Ar	ea						
Incs	ment	Α	В	С	D	Е	F		
-			_	-					
0	0.0	0	0	0	0	0	0		
1	25.3	25	25	25	25	25	25		
2	1.4	1	1	1	1	1	1		
3	24.6	25	25	25	25	25	25		

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 70t 1	$\begin{array}{c} 0.0\\ 2.7\\ 10.9\\ 2.7\\ 61.7\\ 29.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$ \begin{array}{c} 0\\ 3\\ 11\\ 3\\ 62\\ 30\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 5\\ 169 1 \end{array} $	$\begin{array}{c} 0 \\ 3 \\ 11 \\ 62 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 3 \\ 11 \\ 362 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 3 \\ 11 \\ 32 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	Pond 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0	Sto 0 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0	rage_	_30IL_	_6CL
101.1	.00.0	109 1	109 I	.09	109	109 -	109			
Routi	ng resul	ts:								
Area4 Area4 DESIG	: 72 hou N run no	ır 1% Desi). 1	gn S	tor	m					
Param	eters:	kc =	0.90)	m =	0.80)			
LOSS	paramete	ers Ir	itia	1 1 30.	oss 00	(mm)	C	ont. 6	loss .00	(mm/h)
Resul with Peak Peak Peak	ts of ro ks = 0. elevati outflow storage	buting thr 8289E+02 on= 2 y = 0 y = 2 y = 2	rough & ms 34 m 04 m 59E+	sp = 1 ³ /s 04	ecia 0.7 m³	l sto 4	orag	e Pon	d	
*** S	pecial s	storage :	Ро	nd						
Peak Time Volum Time Lag (Lag t	discharg to peak, e,m ³ to centr c.m. to o peak,h	ye,m³/s h roid,h c.m.),h	Out 0.0 3 67E 1 7 1	Hyd flo 369 6.0 +04 02. 9.8 3.9	rogr W 0 2.9	aph Inflo .7422 30.0 3E+04 25.0 7.9	2 2 1 5			
Hydro *****	graph sı	Immary								
Site 01 02	Descrip Special Special	otion storage storage	:	Pon Pon	d – d –	Outf ⁻ Inflo	l ow ow			
Inc 1 2 3 4 5 6 7 8 9 10 11	Time 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00 33.00	Hyd0001 0.0000 0.0007 0.0027 0.0049 0.0073 0.0087 0.0096 0.0111 0.0169 0.0292	Hy 0 0 0 0 0 0 0 0 0 0 0 0	d00 .00 .24 .19 .20 .18 .02 .11 .10 .64 .74	02 00 58 25 61 46 71 51 86 22					

11345678901223425678901233455678901223455555555555555555555555555555555555	36.00 39.00 42.00 45.00 45.00 51.00 51.00 57.00 60.00 63.00 66.00 72.00 75.00 75.00 78.00 90.00 90.00 90.00 90.00 90.00 102.00 105.00 105.00 105.00 126.00 123.00 126.00 126.00 123.00 135.00 135.00 135.00 135.00 135.00 156.00 159.00 156.00 159.00 156.00 159.00 156.00 159.00 156.00 159.00 156.00 159.00 157.	0.0368 0.0369 0.0361 0.0354 0.0347 0.0340 0.0330 0.0330 0.0322 0.0316 0.0309 0.0307 0.0309 0.0307 0.0309 0.0307 0.0309 0.0309 0.0307 0.0297 0.0291 0.0264 0.0259 0.0264 0.0259 0.0264 0.0259 0.0264 0.0259 0.0254 0.0254 0.0250 0.0245 0.0250 0.0245 0.0223 0.0223 0.0223 0.0223 0.0223 0.0215 0.0212 0.0201 0.0201 0.0197 0.0187 0.0175	0.0792 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363 0.0360 0.0052 0.0000 0.00
523 5455 557 5590 6623 6667 66907 71	156.00 159.00 162.00 165.00 168.00 171.00 174.00 177.00 180.00 183.00 186.00 189.00 192.00 195.00 195.00 198.00 201.00 204.00 207.00 210.00 213.00	0.0194 0.0190 0.0187 0.0184 0.0178 0.0175 0.0172 0.0169 0.0166 0.0163 0.0160 0.0155 0.0155 0.0153 0.0150 0.0148 0.0141	$\begin{array}{c} 0.0000\\$

```
Pond Storage_40IL_3CL
 RORBWin Output File
 ****
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 28 Aug 2018 12:58
 Vector_file
                      : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage.catg
Storm file :\\server\talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage_dr16ari7.stm
 Output information: Flows & all input data
 Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no.
             7
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
 Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                 24
 End of hyeto/hydrographs:
                                 24
 Duration of calculations:
                                 70
 Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
```

```
Page 1
```

16

0.4

17	5.2
18	0.7
19	0.0
20	0.0
21	0.1
22	2.3
23	5.3
Total	100.0

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	5	Route hydrograph thru normal storage 4
6	4	Add h-graph ex step 3 to h-graph ex step 5
7	16.0	Route thru existing storage, Pond
8	0	**************End of control vector**********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
А	1.61E-01	6.25E-01
В	2.90E-02	3.20E-01

Total 1.900E-01

For whole catchment ; Av. Dist., km* = 0.58 For interstation area 1; Av. Dist., km* = 0.58; ISA Factor = 1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	slope
no.	km*	time		percent
1	0.1	0.190	Natural	
2	0.5	0.242	Lined	0.167
3	0.1	0.182	Natural	
4	0.2	0.018	Lined	6.772

* or other function of reach properties related to travel time

Special storage data

Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, [.] Time	in time inc. Sub-	following	time	shown
Catch Incs ment	Area A B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Tot.436.0 Pluvi. ref. no	436 436 . 1 1			

Rain1 Time	Fall-excess,	mm, Su	in time b-	inc.	following	time	shown
Incs	ment	Ar A	'ea В				
0 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 12 3 14 5 16 7 8 9 0 11 12 3 14 5 16 7 8 9 0 11 12 3 14 5 16 7 11 12 11 12 11 12 11 12 11 12 11 11 12 11 11	$\begin{array}{c} 0.0\\ 33.2\\ 10.4\\ 33.6\\ 6.0\\ 11.7\\ 19.9\\ 11.7\\ 70.7\\ 38.7\\ 2.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 13.6\\ 0.0\\ 0.0\\ 0.0\\ 13.6\\ 0.0\\ 0.0\\ 1.0\\ 14.2 \end{array}$	0 33 10 34 6 12 20 12 71 39 3 0 0 0 0 0 0 0 14 0 0 0 1 14	$\begin{array}{c} 0\\ 33\\ 10\\ 34\\ 6\\ 12\\ 20\\ 12\\ 71\\ 39\\ 3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 14\\ 0\\ 0\\ 0\\ 14\\ 14 \end{array}$				
Tot.2	267.7	268	268				

Routing results: Area4 Area4: 72 hour 1% Design Storm DESIGN run no. 1 0.90 m = 0.80Parameters: kc = Loss parameters Initial loss (mm) Cont. loss (mm/h) 40.00 3.00 Results of routing through special storage Pond with ks = 0.8289E+02 & ms = 0.74Peak elevation exceeds max. of elev.-stor. table, 3.00 Peak outflow = $0.07 \text{ m}^3/\text{s}$ 4.24E+04 m³ Peak storage = *** Special storage : Pond Hydrograph Outflow Inflow Peak discharge,m³/s 0.072 1.040 Time to peak,h 27.0 33.0 Volume, m³ 3.24E+04 5.16E+04 Time to centroid,h 100. 26. Lag (c.m. to c.m.),h 2.5 76.3 9.52 Lag to peak, h 3.52 Hydrograph summary Description Site Pond - Outflow 01 Special storage : Pond - Inflow 02 Special storage : Hyd0001 Hyd0002 Inc тіme 0.0000 0.0000 1 3.00 2 3 0.0000 6.00 0.0000 9.00 0.0015 0.4453 4 5 0.3590 12.00 0.0059 15.00 0.0111 0.3916 6 7 18.00 0.0167 0.3375 0.0197 0.0234 0.0427 21.00 8 24.00 0.4131 0.2010 9 27.00 0.0287 10 0.0407 30.00 1.0402 11 33.00 0.0617 0.9304 12 36.00 0.0715 0.0152 13 39.00 0.0704 0.0349 14 42.00 0.0691 0.0000 15 45.00 0.0000 0.0674 16 48.00 0.0658 0.0000 0.0643 17 51.00 0.0000 18 54.00 0.0628 0.0000 19 57.00 0.0633 0.1730 0.0650 0.0979 20 60.00 21 63.00 0.0646 0.0000 22 66.00 0.0631 0.0000 23 24 25 69.00 0.0616 0.0000 0.0603 72.00 0.0103 75.00 0.0613 0.1934 26 27 0.0943 78.00 0.0632 81.00 0.0628 0.0000 28 29 84.00 0.0614 0.0000 87.00 0.0599 0.0000 90.00 30 0.0585 0.0000 31 93.00 0.0572 0.0000 32 96.00 0.0559 0.0000 0.0000 33 99.00 0.0546 34 102.00 0.0534 0.0000 105.00 35 0.0522 0.0000

$\begin{array}{c} 367\\ 378\\ 901\\ 423\\ 445\\ 447\\ 490\\ 555\\ 556\\ 556\\ 556\\ 556\\ 66\\ 66\\ 66\\ 6$	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 135.00 141.00 144.00 144.00 150.00 153.00 153.00 159.00 159.00 162.00 165.00 165.00 171.00 174.00 177.00 180.00 183.00 192.00 195.00 195.00 195.00 195.00 195.00	0.0510 0.0499 0.0488 0.0477 0.0467 0.0456 0.0447 0.0437 0.0428 0.0418 0.0410 0.0393 0.0384 0.0361 0.0354 0.0354 0.0354 0.0347 0.0340 0.0320 0.0320 0.0313 0.0301 0.0295 0.0290 0.0273	0.0000 0.00	Pond Storage_40IL_3CL
64 65	192.00 195.00	0.0284 0.0279	0.0000.0	
66	198.00	0.0273	0.0000	
67 68	201.00	0.0268	0.0000	
69	207.00	0.0258	0.0000	
70 71	210.00	0.0253	0.0000	
/ L	213.00	0.0249	0.0000	

```
Pond Storage_40IL_6CL
 RORBWin Output File
 ******
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 27 Jun 2018 13:04
Vector_file
                     : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Storm Water\RORBwin\New Catchments\Area 4
Simulation\Area4.catg
                       \\SERVER\Talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
 Storm file
Approval Documentation\Data\Storm Water\RORBWin\New Catchments\Area 4
Simulation\Area4_dr16ari7.stm
 Output information: Flows & all input data
Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no. 21
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                24
 End of hyeto/hydrographs:
                                24
 Duration of calculations:
                                70
Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
    16
            0.4
```

17 18 19 20 21 22 23	5.2 0.7 0.0 0.0 0.1 2.3 5.3	
Total	100.0	

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	4	Add h-graph ex step 3 to h-graph ex step 4
6	5	Route hydrograph thru normal storage 4
7	3	Store hydrograph from step 6; reset hydrograph to zero
8	1	Add sub-area 'C' inflow & route thru normal storage 5
9	4	Add h-graph ex step 7 to h-graph ex step 8
10	5	Route hydrograph thru normal storage 6
11	3	Store hydrograph from step 10; reset hydrograph to zero
12	1	Add sub-area 'D' inflow & route thru normal storage 7
13	4	Add h-graph ex step 11 to h-graph ex step 12
14	5	Route hydrograph thru normal storage 8
15	3	Store hydrograph from step 14; reset hydrograph to zero
16	1	Add sub-area 'E' inflow & route thru normal storage 9
17	4	Add h-graph ex step 15 to h-graph ex step 16
18	3	Store hydrograph from step 17; reset hydrograph to zero
19	1	Add sub-area 'F' inflow & route thru normal storage 10
20	4	Add h-graph ex step 18 to h-graph ex step 19
21	16.0	Route thru existing storage, Pond
22	0	************End of control vector*********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
А	2.80E-02	6.98E-01
В	2.80E-02	5.36E-01
С	2.80E-02	3.74E-01
D	2.80E-02	2.12E-01
Е	2.80E-02	1.00E-01
F	2.80E-02	5.00E-02

Total 1.680E-01

For	whole catchment	; Av. Dist.,	km* =	0.33	
For	interstation area	1; Av. Dist.,	km* =	0.33; ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
no.	km*	time		percent
1	0.1	0.152	Natural	-
2	0.2	0.265	Unlined	0.149
3	0.1	0.152	Natural	
4	0.2	0.265	Unlined	0.149
5	0.1	0.152	Natural	
6	0.2	0.265	Unlined	0.149
7	0.1	0.152	Natural	
8	0.2	0.265	Unlined	0.149
9	0.1	0.163	Unlined	0.149
10	0.1	0.152	Natural	

Special storage data

Area4 DESIGN Run Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, ir Time	n time Su	e ind ub-	c. fo	0110	wing	time	shown
Catch Incs ment	A A	rea B	С	D	E	F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 412 33 00 23 30 01 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	
Tot.436.0 Pluvi. ref. no.	436 1	436 1	436 1	436 1	436 1	436 1	

Rain	fall-excess,	mm,	in [.]	time	inc.	fol	lowing	time	shown
Tıme		Su	b-						
	Catch	Ar	ea						
Incs	ment	Α	В	C	D	Е	F		
0	0.0	0	0	0	0	0	0		
1	24.2	24	24	24	24	24	24		
2	1.4	1	1	1	1	1	1		
3	24.6	25	25	25	25	25	25		

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{c} 0.0\\ 2.7\\ 10.9\\ 2.7\\ 61.7\\ 29.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$ \begin{array}{c} 0\\ 3\\ 11\\ 3\\ 62\\ 30\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$ \begin{array}{c} 0\\ 3\\ 11\\ 3\\ 62\\ 30\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$ \begin{array}{c} 0 \\ 3 \\ 11 \\ 62 \\ 63 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Pon 0 0 3 3 1 11 3 3 2 62 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	d sto 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orage_403	IL_6CL
Tot.1	.67.7	168 .	168 1	68 IG	8 168	168		
Routi ***** Area4 Area4 DESIG	ng resul ******** : 72 hou N run nc	ts: **** ir 1% Des ⁻). 1	ign S	torm				
Param	eters:	kc =	0.90	m	= 0.8	80		
Loss	paramete	ers In	nitia	1 los 40.00	s (mm)) C	ont. los 6.00	s (mm/h)
Resul with Peak Peak Peak	ts of ro ks = 0. elevati outflow storage	buting the 8289E+02 on= 2 i = 0 i = 2 i = 2	rough & ms .33 m .04 m .58E+	spec = 0 ³ /s 04 m ³	ial s [.] .74	torag	e Pond	
*** S	pecial s	storage :	Ро	nd				
Peak Time Volum Time Lag (Lag t	discharg to peak, ie,m ³ to centr c.m. to o peak,h	ye,m³/s h `oid,h c.m.),h	Out 0.0 3 1.65E 1 7 1	Hydro flow 366 6.0 +04 2 02. 9.8 3.8	graph Inf 0.742 30 .91E+(2 2 7	low 22 .0 04 5. .6 .8		
Hydro *****	graph su	Immary						
Site 01 02	Descrip Special Special	storage storage	:	Pond Pond	- Out - Inf	flow low		
Inc 1 2 3 4 5 6 7 8 9 10 11	Time 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00 33.00	Hyd0001 0.0000 0.0006 0.0025 0.0047 0.0071 0.0085 0.0093 0.0108 0.0167 0.0289	Hy 0 0 0 0 0 0 0 0 0	d0002 .0000 .2346 .1913 .2050 .1854 .0238 .1173 .1051 .6486 .7422				

1111111222222222222222222222222222222	36.00 39.00 42.00 45.00 48.00 51.00 57.00 60.00 63.00 66.00 69.00 72.00 75.00 75.00 78.00 81.00 84.00 87.00 90.00 93.00 99.00 102.00 105.00 105.00 105.00 111.00 114.00 117.00 123.00 126.00 123.00 135.00 135.00 138.00 141.00 141.00 150.00 135.00 135.00 135.00 156.00 159.00 162.00 159.00 162.00 159.00 162.00 151.00 151.00 151.00 150.00 153.00 156.00 159.00 165.0	0.0365 0.0366 0.0358 0.0351 0.0344 0.0337 0.0327 0.0328 0.0325 0.0319 0.0307 0.0305 0.0307 0.0306 0.0307 0.0306 0.0307 0.0306 0.0307 0.0307 0.0305 0.0294 0.0289 0.0283 0.0273 0.0267 0.0262 0.0257 0.0253 0.0248 0.0243 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.0226 0.0222 0.0218 0.0210 0.0207 0.0203 0.0199 0.0186 0.0180 0.0186 0.0183 0.0176	0.0791 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363 0.0360 0.0052 0.0000 0.00
5555555556666666666	156.00 159.00 162.00 165.00 168.00 171.00 174.00 177.00 180.00 183.00 186.00 189.00 192.00 195.00 198.00 201.00	0.0192 0.0189 0.0186 0.0183 0.0180 0.0176 0.0173 0.0171 0.0168 0.0165 0.0165 0.0162 0.0159 0.0157 0.0154 0.0152 0.0149	$\begin{array}{c} 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\$
68 69 70 71	204.00 207.00 210.00 213.00	0.0147 0.0144 0.0142 0.0140	0.0000 0.0000 0.0000 0.0000

```
Pond Storage_50IL_3CL
 RORBWin Output File
 ****
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 28 Aug 2018 12:57
 Vector_file
                      : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage.catg
Storm file :\\server\talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage_dr16ari7.stm
 Output information: Flows & all input data
 Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no.
             7
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
 Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                 24
 End of hyeto/hydrographs:
                                 24
 Duration of calculations:
                                 70
 Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
```

0.4

17	5.2
18	0.7
19	0.0
20	0.0
21	0.1
22	2.3
23	5.3
Total	100.0

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	5	Route hydrograph thru normal storage 4
6	4	Add h-graph ex step 3 to h-graph ex step 5
7	16.0	Route thru existing storage, Pond
8	0	**************End of control vector**********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
А	1.61E-01	6.25E-01
В	2.90E-02	3.20E-01

Total 1.900E-01

For whole catchment ; Av. Dist., km* = 0.58 For interstation area 1; Av. Dist., km* = 0.58; ISA Factor = 1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	slope
no.	km*	time		percent
1	0.1	0.190	Natural	
2	0.5	0.242	Lined	0.167
3	0.1	0.182	Natural	
4	0.2	0.018	Lined	6.772

* or other function of reach properties related to travel time

Special storage data

Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, [.] Time	in time inc. Sub-	following	time	shown
Catch Incs ment	Area A B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Tot.436.0 Pluvi. ref. no	436 436 . 1 1			

Rainf Time	all-excess,	mm, Su	in tim∈ b-	inc.	following	time	shown
Incs	Catch ment	Ar A	ea B				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 21 22 23	$\begin{array}{c} 0.0\\ 23.2\\ 10.4\\ 33.6\\ 6.0\\ 11.7\\ 19.9\\ 11.7\\ 70.7\\ 38.7\\ 2.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0 23 10 34 6 12 20 12 71 39 3 0 0 0 0 0 0 14 0 0 0 1 14	0 23 10 34 6 12 20 12 71 39 3 0 0 0 0 0 14 0 0 0 1 14				
Tot.2	257.7	258	258				

Routing results: Area4 Area4: 72 hour 1% Design Storm DESIGN run no. 1 0.90 m = 0.80Parameters: kc = Loss parameters Initial loss (mm) Cont. loss (mm/h) 50.00 3.00 Results of routing through special storage Pond with ks = 0.8289E+02 & ms = 0.74Peak elevation exceeds max. of elev.-stor. table, 3.00 Peak outflow = $0.07 \text{ m}^3/\text{s}$ 4.08E+04 m³ Peak storage = *** Special storage : Pond Hydrograph Inflow Outflow Peak discharge,m³/s 0.068 1.039 Time to peak,h 27.0 33.0 Volume, m³ 3.09E+04 4.97E+04 100. Time to centroid,h 27. Lag (c.m. to c.m.),h 76.3 2.5 2.78 Lag to peak, h 8.78 Hydrograph summary Description Site Pond - Outflow 01 Special storage : Pond - Inflow 02 Special storage : Hyd0001 Hyd0002 Inc тіme 0.0000 0.0000 1 3.00 2 3 0.0000 6.00 0.0000 9.00 0.0009 0.3053 4 5 0.2996 12.00 0.0039 15.00 0.0085 0.4304 6 7 18.00 0.0140 0.3121 $0.0167 \\ 0.0204$ 0.0576 21.00 8 24.00 0.4056 0.2048 9 27.00 0.0256 10 30.00 0.0374 1.0388 0.0581 11 33.00 0.9306 12 36.00 0.0679 0.0161 13 39.00 0.0668 0.0336 14 42.00 0.0656 0.0000 15 45.00 0.0000 0.0641 16 48.00 0.0626 0.0000 17 0.0611 51.00 0.0000 54.00 18 0.0597 0.0000 19 57.00 0.0603 0.1730 0.0979 20 60.00 0.0621 21 63.00 0.0618 0.0000 22 66.00 0.0603 0.0000 23 24 25 69.00 0.0589 0.0000 72.00 0.0577 0.0103 75.00 0.0587 0.1934 26 27 0.0943 78.00 0.0607 81.00 0.0604 0.0000 28 29 84.00 0.0590 0.0000 87.00 0.0576 0.0000 90.00 30 0.0000 0.0563 31 93.00 0.0550 0.0000 32 96.00 0.0538 0.0000 0.0526 0.0000 33 99.00 34 102.00 0.0514 0.0000 105.00 35 0.0502 0.0000

367 390 442 444 447 490 123 555 5567 890 1234 66234	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 135.00 135.00 141.00 144.00 144.00 147.00 150.00 153.00 156.00 159.00 162.00 165.00 165.00 168.00 171.00 174.00 177.00 180.00 183.	0.0491 0.0480 0.0470 0.0460 0.0450 0.0412 0.0421 0.0421 0.0412 0.0404 0.0395 0.0379 0.0371 0.0364 0.0356 0.0349 0.0342 0.0356 0.0342 0.0328 0.0322 0.0315 0.0303 0.0322 0.0315 0.0309 0.0303 0.0297 0.0286 0.0280 0.0275	0.0000 0.0000	Pond Storage_50IL_3CL
60 61	180.00	0.0297	0.0000	
62 63	186.00 189.00	0.0286	0.0000	
64 65 66	192.00 195.00 198.00	0.0275 0.0270 0.0265	$0.0000 \\ 0.0000 \\ 0.0000$	
67 68	201.00	0.0260 0.0255	0.0000	
69 70	207.00	0.0250 0.0246	0.0000	
/1	213.00	0.0241	0.0000	

```
Pond Storage_50IL_6CL
 RORBWin Output File
 ******
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 27 Jun 2018 13:02
Vector_file
                     : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Storm Water\RORBwin\New Catchments\Area 4
Simulation\Area4.catg
                       \\SERVER\Talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
 Storm file
Approval Documentation\Data\Storm Water\RORBWin\New Catchments\Area 4
Simulation\Area4_dr16ari7.stm
 Output information: Flows & all input data
Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no. 21
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                24
 End of hyeto/hydrographs:
                                24
 Duration of calculations:
                                70
Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
    16
            0.4
```

17 18 19 20 21 22 23	5.2 0.7 0.0 0.1 2.3 5.3	
Total	100.0	

Step	Code	Description Add sub-area 'A' inflow & route thru normal storage 1 Boute bydrograph thru pormal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	4	Add h-graph ex step 3 to h-graph ex step 4
6	5	Route hydrograph thru normal storage 4
7	3	Store hydrograph from step 6; reset hydrograph to zero
8	1	Add sub-area 'C' inflow & route thru normal storage 5
9	4	Add h-graph ex step 7 to h-graph ex step 8
10	5	Route hydrograph thru normal storage 6
11	3	Store hydrograph from step 10; reset hydrograph to zero
12	1	Add sub-area 'D' inflow & route thru normal storage 7
13	4	Add h-graph ex step 11 to_h-graph ex step 12
14	5	Route hydrograph thru normal storage 8
15	3	Store hydrograph from step 14; reset hydrograph to zero
16	1	Add sub-area 'E' inflow & route thru normal storage 9
17	4	Add h-graph ex step 15 to h-graph ex step 16
18	3	Store hydrograph from step 17; reset hydrograph to zero
19	1	Add sub-area 'F' inflow & route thru normal storage 10
20	4	Add h-graph ex step 18 to h-graph ex step 19
21	16.0	Route thru existing storage, Pond
22	0	*************End of control vector**********

Sub-ar	ea data	
Sub-	Area	Dist.
area	km²	km*
А	2.80E-02	6.98E-01
В	2.80E-02	5.36E-01
С	2.80E-02	3.74E-01
D	2.80E-02	2.12E-01
Е	2.80E-02	1.00E-01
F	2.80E-02	5.00E-02

Total 1.680E-01

For whole catchment	; Av. Dist., km* =	0.33	
For interstation area	1; Av. Dist., km* =	0.33; ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
no.	km*	time		percent
1	0.1	0.152	Natural	-
2	0.2	0.265	Unlined	0.149
3	0.1	0.152	Natural	
4	0.2	0.265	Unlined	0.149
5	0.1	0.152	Natural	
6	0.2	0.265	Unlined	0.149
7	0.1	0.152	Natural	
8	0.2	0.265	Unlined	0.149
9	0.1	0.163	Unlined	0.149
10	0.1	0.152	Natural	

Special storage data

Area4 DESIGN Run Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, ir Time	n time Su	e ind ub-	c. fo	0110	wing	time	shown
Catch Incs ment	A A	rea B	С	D	E	F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 412 33 00 23 30 01 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	
Tot.436.0 Pluvi. ref. no.	436 1	436 1	436 1	436 1	436 1	436 1	

Raini	fall-excess,	mm,	in b-	time	inc.	fol	lowing	time	shown
1 me	Catal		D .						
	Catch	Ar	ea						
Incs	ment	Α	В	C	D	Е	F		
0	0.0	0	0	0	0	0	0		
1	14.2	14	14	14	14	14	14		
2	1.4	1	1	1	1	1	1		
3	24.6	25	25	25	25	25	25		

4 5 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23	$\begin{array}{c} 0.0\\ 2.7\\ 10.9\\ 2.7\\ 61.7\\ 29.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 5 0 0 0 5	$\begin{array}{cccc} 0 \\ 3 \\ 11 \\ 62 \\ 630 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pond 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0	Sto 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5	rage_50]	IL_6CL
Tot.1	.57.7	158 1	L58 15	8 158	158	158		
Routi ***** Area4 Area4 DESIG	ng resul ******** : : 72 hou N run no	ts: *** pr 1% Desi . 1	gn St	orm				
Param	eters:	kc =	0.90	m =	= 0.8	C		
Loss	paramete	rs Ir	nitial 5	loss 0.00	(mm)	Co	ont. los 6.00	s (mm/h)
Resul with Peak Peak Peak	ts of ro ks = 0. elevati outflow storage	buting thr 8289E+02 on= 2. i= 0. i= 2.	rough & ms 20 m 03 m ³ 43E+0	specia = 0.7 /s 4 m³	al sto 74	orage	Pond	
*** S	pecial s	torage :	Pon	d				
Peak Time Volum Time Lag (Lag t	discharg to peak, e,m ³ to centr c.m. to o peak,h	e,m³/s h oid,h c.m.),h	H Outf 0.03 36 L.53E+ 10 79 12	ydrogr 1ow 37 (.0 04 2.7 3. .7 .7	raph Infl 0.742 30.0 74E+0 26 2.0 6.1	ow 3 0 4 5 7		
Hydro ****	graph su	mmary						
Site 01 02	Descrip Special Special	storage storage	: P : P	ond – ond –	Outf Inflo	l ow ow		
Inc 1 2 3 4 5 6 7 8 9 10 11	Time 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00 33.00	Hyd0001 0.0000 0.0003 0.0012 0.0029 0.0052 0.0064 0.0072 0.0086 0.0142 0.0261	Hyd 0. 0. 0. 0. 0. 0. 0. 0.	0002 0000 1316 1211 2277 1797 0157 1192 1046 6487 7423				

11314516789012232222222222222222222222222222222222	36.00 39.00 42.00 45.00 45.00 51.00 51.00 57.00 60.00 63.00 66.00 72.00 75.00 75.00 78.00 81.00 84.00 87.00 90.00 90.00 93.00 90.00 102.00 105.00 105.00 126.00 123.00 126.00 123.00 126.00 123.00 135.00 138.00 141.00 141.00 142.00 135.00 135.00 135.00 135.00 135.00 136.00 153.00 159.00 162.00	0.0335 0.0337 0.0330 0.0323 0.0317 0.0311 0.0305 0.0302 0.0301 0.0296 0.0290 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0264 0.0259 0.0254 0.0250 0.0254 0.0250 0.0254 0.0250 0.0241 0.0250 0.0245 0.0241 0.0232 0.0224 0.0228 0.0224 0.0224 0.0220 0.0216 0.0212 0.0204 0.0216 0.0212 0.0208 0.0204 0.0216 0.0212 0.0208 0.0204 0.0216 0.0216 0.0212 0.0208 0.0204 0.0216 0.0217 0.0218 0.0201 0.0197 0.0187 0.0184 0.0175	0.0790 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363 0.0360 0.0052 0.0000 0.00
4990123345567890123345667890	144.00 147.00 150.00 153.00 156.00 159.00 162.00 165.00 165.00 171.00 174.00 177.00 180.00 180.00 183.00 189.00 192.00 195.00 195.00 198.00 201.00 204.00 207.00 210.00	0.0194 0.0190 0.0187 0.0181 0.0178 0.0175 0.0172 0.0160 0.0163 0.0160 0.0153 0.0155 0.0153 0.0155 0.0153 0.0155 0.0143 0.0141 0.0138 0.0136 0.0134	$\begin{array}{c} 0.0000\\$
71	213.00	0.0132	0.0000

```
Pond Storage_60IL_3CL
 RORBWin Output File
 ****
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 28 Aug 2018 12:46
 Vector_file
                      : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage.catg
Storm file :\\server\talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
Approval Documentation\Data\Surface Water\RORBWin\New Catchments\Area 4
Simulation\Area4-New2_Storage_dr16ari7.stm
 Output information: Flows & all input data
 Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no.
             7
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
 Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                 24
 End of hyeto/hydrographs:
                                 24
 Duration of calculations:
                                 70
 Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
```

16

0.4

17	5.2
18	0.7
19	0.0
20	0.0
21	0.1
22	2.3
23	5.3
Total	100.0

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	5	Route hydrograph thru normal storage 4
6	4	Add h-graph ex step 3 to h-graph ex step 5
7	16.0	Route thru existing storage, Pond
8	0	**************End of control vector**********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
А	1.61E-01	6.25E-01
В	2.90E-02	3.20E-01

Total 1.900E-01

For whole catchment ; Av. Dist., km* = 0.58 For interstation area 1; Av. Dist., km* = 0.58; ISA Factor = 1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	slope
no.	km*	time		percent
1	0.1	0.190	Natural	
2	0.5	0.242	Lined	0.167
3	0.1	0.182	Natural	
4	0.2	0.018	Lined	6.772

* or other function of reach properties related to travel time

Special storage data

Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Rainfall, mm, Time	in time inc. Sub-	following	time	shown
Catch Incs ment	Area A B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Tot.436.0 Pluvi. ref. no	436 436 . 1 1			

Rain1 Time	Fall-excess,	mm, Su	in b-	time	inc.	following	time	shown
Incs	Catch ment	Ar A	ea E	3				
0 1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 11 12 11 11	$\begin{array}{c} 0.0\\ 13.2\\ 10.4\\ 33.6\\ 6.0\\ 11.7\\ 19.9\\ 11.7\\ 70.7\\ 38.7\\ 2.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 13.6\\ 0.0\\ 0.0\\ 0.0\\ 13.6\\ 0.0\\ 0.0\\ 1.0\\ 14.2 \end{array}$	0 13 10 34 6 12 20 12 71 39 3 0 0 0 0 0 0 0 14 0 0 0 1 14	$\begin{array}{c} 0 \\ 13 \\ 10 \\ 34 \\ 6 \\ 12 \\ 20 \\ 12 \\ 71 \\ 39 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $					
Tot.2	247.7	248	248	3				

Routing results: Area4 Area4: 72 hour 1% Design Storm DESIGN run no. 1 0.90 m = 0.80Parameters: kc = Loss parameters Initial loss (mm) Cont. loss (mm/h) 60.00 3.00 Results of routing through special storage Pond with ks = 0.8289E+02 & ms = 0.74Peak elevation exceeds max. of elev.-stor. table, 3.00 $0.06 \text{ m}^3/\text{s}$ Peak outflow = 3.91E+04 m³ Peak storage = *** Special storage : Pond Hydrograph Outflow Inflow Peak discharge,m³/s 0.064 1.037 Time to peak,h 27.0 33.0 Volume, m³ 2.95E+04 4.78E+04 Time to centroid,h 101. 28. Lag (c.m. to c.m.),h 76.2 2.6 7.99 Lag to peak, h 1.99 Hydrograph summary Description Site Pond - Outflow 01 Special storage : Pond - Inflow 02 Special storage : Hyd0001 Hyd0002 Inc тіme 0.0000 0.0000 1 3.00 2 3 0.0000 6.00 0.0000 9.00 0.0004 0.1682 4 5 0.2355 12.00 0.0021 15.00 0.0061 0.4714 6 7 18.00 0.0113 0.2850 $0.0139 \\ 0.0176$ 21.00 0.0735 8 24.00 0.3974 0.2091 9 27.00 0.0226 10 30.00 0.0341 1.0372 11 33.00 0.0545 0.9307 12 36.00 0.0642 0.0171 13 39.00 0.0633 0.0320 14 42.00 0.0621 0.0000 15 45.00 0.0000 0.0607 16 48.00 0.0593 0.0000 0.0579 17 51.00 0.0000 18 54.00 0.0566 0.0000 19 57.00 0.0573 0.1730 0.0979 20 60.00 0.0591 21 63.00 0.0589 0.0000 22 66.00 0.0575 0.0000 23 24 25 69.00 0.0562 0.0000 72.00 0.0550 0.0103 75.00 0.0561 0.1934 26 27 0.0943 78.00 0.0581 81.00 0.0579 0.0000 28 29 84.00 0.0565 0.0000 87.00 0.0000 0.0552 90.00 30 0.0540 0.0000 31 93.00 0.0528 0.0000 32 96.00 0.0516 0.0000 0.0000 33 99.00 0.0504 34 102.00 0.0493 0.0000 105.00 0.0482 35 0.0000

367 389 401 423 445 447 490 552 555 556 578 90 612 634 6612 6612 6612 6612 6612 6612 6612 661	108.00 111.00 114.00 120.00 123.00 123.00 125.00 135.00 135.00 135.00 141.00 144.00 144.00 147.00 150.00 153.00 156.00 159.00 162.00 165.00 165.00 171.00 174.00 177.00 180.00 183.00 183.00 189.00 192.00	0.0472 0.0461 0.0451 0.0432 0.0423 0.0414 0.0405 0.0397 0.0380 0.0365 0.0357 0.0350 0.0357 0.0350 0.0350 0.0343 0.0336 0.0330 0.0317 0.0310 0.0310 0.0317 0.0310 0.0323 0.0317 0.0310 0.0323 0.02281 0.0276 0.0271 0.0266	0.0000 0.00	Pond St	corage_6	OIL_3CL
61 62	183.00 186.00	0.0281 0.0276	0.0000			
63 64 65 66	192.00 192.00 195.00 198.00	0.0271 0.0266 0.0261 0.0256	0.0000 0.0000 0.0000 0.0000			
67 68 69 70	201.00 204.00 207.00	0.0251 0.0246 0.0242 0.0237	0.0000 0.0000 0.0000			
70	213.00	0.0237	0.0000			
```
Pond Storage_60IL_6CL
 RORBWin Output File
 ******
 Program version 6.32 (last updated 3rd September 2017)
 Copyright Monash University and Hydrology and Risk Consulting
 Date run: 27 Jun 2018 12:36
Vector_file
                     : \\server\talis\SECTIONS\Waste\PROJECTS\Tw2018\Tw18004 - Onslow
Approval Documentation\Data\Storm Water\RORBwin\New Catchments\Area 4
Simulation\Area4.catg
                       \\SERVER\Talis\SECTIONS\Waste\PROJECTS\TW2018\TW18004 - Onslow
 Storm file
Approval Documentation\Data\Storm Water\RORBWin\New Catchments\Area 4
Simulation\Area4_dr16ari7.stm
 Output information: Flows & all input data
Data checks:
 Next data to be read & checked:
 Catchment name & reach type flag
 Control vector & storage data
 Code no. 21
                   16.0
 Sub-area areas
 Impervious flag
 Initial storm data
 Rainfall burst times
 Pluviograph 1
 Sub-area rainfalls
 Data check completed
 Data:
 ****
 Area4
Time data, in increments from initial time
Area4: 72 hour 1% Design Storm
Time increment (hours)= 3.00
                              Finish
                     Start
 Rainfall times:
                       0
                                24
 End of hyeto/hydrographs:
                                24
 Duration of calculations:
                                70
Pluviograph data (time in incs, rainfall in mm, in increment following time shown)
          1:Temporal pattern (% of depth
   Time
             1
            8.9
     0
            9.9
     1
     23456789
            4.5
            9.8
            3.5
            4.8
            6.6
            4.8
           18.3
           10.9
    10
            2.7
            0.6
    11
    12
            0.7
    13
            0.0
    14
            0.0
    15
            0.0
    16
            0.4
```

17 18 19 20 21 22 23	5.2 0.7 0.0 0.0 0.1 2.3 5.3	
Total	100.0	

DESIGN run control vector

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
2	5	Route hydrograph thru normal storage 2
3	3	Store hydrograph from step 2; reset hydrograph to zero
4	1	Add sub-area 'B' inflow & route thru normal storage 3
5	4	Add h-graph ex step 3 to h-graph ex step 4
6	5	Route hydrograph thru normal storage 4
7	3	Store hydrograph from step 6; reset hydrograph to zero
8	1	Add sub-area 'C' inflow & route thru normal storage 5
9	4	Add h-graph ex step 7 to h-graph ex step 8
10	5	Route hydrograph thru normal storage 6
11	3	Store hydrograph from step 10; reset hydrograph to zero
12	1	Add sub-area 'D' inflow & route thru normal storage 7
13	4	Add h-graph ex step 11 to h-graph ex step 12
14	5	Route hydrograph thru normal storage 8
15	3	Store hydrograph from step 14; reset hydrograph to zero
16	1	Add sub-area 'E' inflow & route thru normal storage 9
17	4	Add h-graph ex step 15 to h-graph ex step 16
18	3	Store hydrograph from step 17; reset hydrograph to zero
19	1	Add sub-area 'F' inflow & route thru normal storage 10
20	4	Add h-graph ex step 18 to h-graph ex step 19
21	16.0	Route thru existing storage, Pond
22	0	************End of control vector*********

Sub-area data

Sub-	Area	Dist.
area	km²	km*
А	2.80E-02	6.98E-01
В	2.80E-02	5.36E-01
С	2.80E-02	3.74E-01
D	2.80E-02	2.12E-01
Е	2.80E-02	1.00E-01
F	2.80E-02	5.00E-02

Total 1.680E-01

For	whole catchment	; Av. Dist.,	km* =	0.33	
For	interstation area	1; Av. Dist.,	km* =	0.33; ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage	Length	Rel. delay	Туре	Slope
no.	km*	time		percent
1	0.1	0.152	Natural	-
2	0.2	0.265	Unlined	0.149
3	0.1	0.152	Natural	
4	0.2	0.265	Unlined	0.149
5	0.1	0.152	Natural	
6	0.2	0.265	Unlined	0.149
7	0.1	0.152	Natural	
8	0.2	0.265	Unlined	0.149
9	0.1	0.163	Unlined	0.149
10	0.1	0.152	Natural	

Special storage data

Area4 DESIGN Run Area4: 72 hour 1% Design Storm Time increment = 3.00 hours

Constant loss model selected

Rainfall, mm, ir Time	n time Su	e ind ub-	c. fo	0110	wing	time	shown
Catch Incs ment	A A	rea B	С	D	E	F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 412 33 00 23 30 01 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 80 48 12 3 0 0 23 3 0 0 10 23	39 43 19 43 15 21 29 21 80 48 12 3 0 0 23 3 0 0 10 23	
Tot.436.0 Pluvi. ref. no.	436 1	436 1	436 1	436 1	436 1	436 1	

Raint	fall-excess,	mm,	in	time	inc.	fo1	lowing	time	shown
Time		Su	b-				-		
	Catch	Ar	ea						
Incs	ment	Α	В	C	D	Е	F		
			_						
0	0.0	0	0	0	0	0	0		
1	4.2	4	4	4	4	4	4		
2	1.4	1	1	1	1	1	1		
3	24.6	25	25	25	25	25	25		

4 5 7 8 9 10 11 12 13 14 15 16 17 18 9 20 22 23	$\begin{array}{c} 0.0\\ 2.7\\ 10.9\\ 2.7\\ 61.7\\ 29.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pond 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0	Stor 0 3 11 3 62 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 5 5	age_601	L_6CL
Tot.1	47.7	148 1	L48 14	8 148	148	148		
Routi ***** Area4 Area4 DESIG	ng resul ******** : 72 hou N run nc	ts: **** or 1% Desi 0. 1	gn St	orm				
Param	eters:	kc =	0.90	m =	= 0.8	C		
LOSS	paramete	ers Ir	nitial 6	loss 0.00	(mm)	Co	nt. los: 6.00	s (mm/h)
Resul with Peak Peak Peak	ts of ro ks = 0 elevati outflow storage	buting thr 8289E+02 on= 2 in= 2 in= 0 in= 2	ough & ms 08 m 03 m ³ 27E+0	specia = 0.7 /s 4 m³	al sto 74	orage	Pond	
*** S	pecial s	torage :	Pon	d				
Peak Time Volum Time Lag (Lag t	discharg to peak, e,m ³ to centr c.m. to o peak,h	roid,h c.m.),h	H Outf 0.03 36 1.41E+ 10 79 11	ydrogi low 08 (.0 04 2.5 4. .4 .4	raph Inflo 0.742 30.0 56E+04 27 2. 5.4	ow 3 0 4 7 4		
Hydro *****	graph su	Immary						
Site 01 02	Descrip Special Special	storage storage	: P : P	ond - ond -	Outf Inflo	l ow ow		
Inc 1 2 3 4 5 6 7 8 9 10 11	Time 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00 33.00	Hyd0001 0.0000 0.0000 0.0002 0.0013 0.0034 0.0044 0.0051 0.0065 0.0118 0.0233	Hyd 0. 0. 0. 0. 0. 0. 0. 0. 0.	0002 0000 0333 0463 2494 1744 0075 1219 1035 6490 7423				

1131456789012232222222222222222222222222222222222	36.00 39.00 42.00 45.00 45.00 51.00 57.00 60.00 63.00 66.00 72.00 75.00 75.00 78.00 81.00 84.00 87.00 90.00 90.00 93.00 99.00 102.00 105.00 105.00 126.00 123.00 126.00 123.00 126.00 123.00 135.00 138.00 141.00 141.00 142.00 135.00 135.00 135.00 135.00 136.00 156.00 159.00 156.00 159.00 156.00 159.00 156.00 159.00 157.0	0.0306 0.0302 0.0296 0.0290 0.0285 0.0279 0.0277 0.0279 0.0273 0.0263 0.0263 0.0262 0.0265 0.0264 0.0265 0.0264 0.0265 0.0255 0.0245 0.0232 0.0232 0.0232 0.0224 0.0232 0.0224 0.0232 0.0224 0.0226 0.0241 0.0232 0.0224 0.0220 0.0216 0.0212 0.0204 0.0216 0.0212 0.0204 0.0216 0.0212 0.0204 0.0216 0.0212 0.0204 0.0216 0.0212 0.0216 0.0212 0.0216 0.0212 0.0216 0.0212 0.0204 0.0201 0.0197 0.0184 0.0175 0.0166 0.0161 0.0158 0.0155	0.0788 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363 0.0360 0.0052 0.0000 0.00
52 53 55 55 55 55 55 55 55 55 55 55 55 55	156.00 159.00 162.00 165.00 168.00 171.00 174.00 177.00 180.00 183.00 186.00 189.00 192.00 192.00 195.00 195.00 201.00 201.00 207.00 210.00 213.00	0.0169 0.0163 0.0161 0.0158 0.0155 0.0153 0.0150 0.0148 0.0148 0.0141 0.0132 0.0130 0.0130 0.0128 0.0124	$\begin{array}{c} 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0$

Appendix C: Surface Water Drainage and Pond System Design Calculations

Stormwater Drainage: Inputs

Mata		Fill in yellow	fields																						
Note:		= Final value	25	1																					
Intensity-Frequency-Duration Data																									
Location	Onslow Ro	ad Landfill, On	Islow																						
Co-ordinates	South	-21.6540																							
https://www.google.com.au/maps	East	115.1350	1																						
Annual Exceedance Probability	1		1					Rainfall (mm)						1	1				In	tensity (mm/	hr)				
http://www.bom.gov.au/water/designRainfalls/revised-ifd/?v	Duration		63%	50%	20%	10%	5%	2%	1%	0.5%	0.2%	0.1%	0.05%	Duration	63%	50%	20%	10%	5%	2%	1%	0.5%	0.2%	0.1%	0.05%
1		0.5	1.1	1.2	1.5	1:10	1:20	1:50	1:100	1:200	1.500	1.1000	1/2000	+	1.1	1.2	1:5	1:10	1:20	1:50	1:100	1.200	1.500	1:1000	1/2000
	1 min	0.017	1.67	1.98	2.97	3.67	4.36	5.29	6.02	1.200	1.000	1.1000	12000	1 min	100	119	178	219	260	316	360	1.200	1.500	1.1000	1.2000
	2 min	0.033	2.74	3.25	4.82	5.89	6.93	8.44	9.67					2 min	82.4	97.2	144	176	207	254	294				
	3 min	0.050	3.88	4.6	6.85	8.4	9.92	12.1	13.8					3 min	77.8	92	137	168	198	243	279				
	4 min	0.067	4.97	5.89	8.81	10.8	12.8	15.6	17.8					4 min	74.8	88.4	132	162	192	235	270				
	5 min	0.083	5.99	7.1	10.6	13.1	15.5	18.9	21.6					5 min	72	85.2	127	157	186	227	260				
	10 min	0.167	10.1	11.9	17.9	22.1	26.3	31.9	36.2					10 min	60.4	71.5	107	132	157	191	217				
	15 min	0.25	13	15.3	23	28.4	33.7	40.9	46.4					15 min	51.9	61.3	91.8	113	135	163	185				
	30 min	0.5	18.4	21.8	32.7	40.2	47.7	57.9	65.7					30 min	36.9	43.7	65.2	80.3	95.4	116	131				
	1 hour	1	24.3	28.8	43.4	53.5	63.6	77.4	88.3					1 hour	24.4	29	43.5	53.6	63.7	77.8	88.9				
	2 hour	2	30.7	36.8	56.3	70	83.8	103	118					2 hour	15.6	18.6	28.4	35.3	42.3	52.1	60				
	3 hour	3	35	42.2	65.6	82.3	99.2	123	143					3 hour	11.9	14.3	22.2	27.8	33.5	41.6	48.2				
	6 hour	6	43.7	53.5	85.9	110	134	169	197					6 hour	7.5	9.16	14.7	18.7	23	28.8	33.5				
	12 hour	12	54.6	67.8	113	146	182	231	272					12 hour	4.71	5.83	9.68	12.6	15.6	19.8	23.2				
	24 hour	24	67	84.2	143	188	235	301	355	426	515	589	67	24 hour	2.89	3.62	6.15	8.06	10.1	12.9	15.2	17.7	21.4	24.5	27.9
	48 hour	48	78.8	99.5	170	222	278	355	419	493	592	675	76	4 48 hour	1.69	2.13	3.62	4.74	5.92	7.57	8.96	10.3	12.3	14.1	15.9
	72 hour	72	84.2	106	180	234	291	370	436	509	609	692	78	2 72 hour	1.19	1.51	2.55	3.31	4.11	5.25	6.23	7.06	8.46	9.61	10.9
	96 hour	96	86.9	110	185	239	295	374	440	515	616	699	78	8 96 hour	0.923	1.16	1.95	2.53	3.11	3.97	4.73	5.37	6.41	7.28	8.21
	120 hour	120	88.5	112	187	241	296	375	441	520	622	705	79	5 120 hour	0.751	0.944	1.58	2.03	2.5	3.18	3.79	4.34	5.18	5.88	6.62
	144 hour	144	89.3	113	188	242	297	375	441	526	629	713	80	4 144 hour	0.632	0.795	1.33	1.7	2.09	2.65	3.16	3.65	4.37	4.95	5.59
	168 hour	168	89.9	113	189	243	298	376	443	533	637	723	81	6 168 hour	0.547	0.687	1.14	1.47	1.8	2.28	2.72	3.17	3.79	4.31	4.86
	1																								
AR&R87 IFDs	ARI in year	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient																	
http://www.hop.gov.ou/hydro/hop/odirouohy/odirouohy.oht		A	B	C	D	E CONT ON	1 055 04	G																	
The second		3.11E+00	-6.66E-01	-7.69E-02	9.57E-03	4.33E-03	-4.95E-04	-8.02E-05																	
(Coemcients Tab)	H	2 3.42E+00	-0.5/E-U1	-7.59E-02	1.04E-02	3.90E-03	-0.02E-04	-4.9/E-05																	
OBSOLETE	1	3.83E+00	-6.25E-01	-6.73E-02	1.02E-02	3.05E-03	-6.28E-04	-1.98E-05																	
	1	4.03E+00	-6.08E-01	-6.29E-02	1.02E-02	2.66E-03	-6.36E-04	-8.81E-06																	
	2	4.23E+00	-5.95E-01	-5.88E-02	1.04E-02	2.20E-03	-6.75E-04	1.16E-05																	
	5	0 4.47E+00	-5.80E-01	-5.48E-02	1.02E-02	1.83E-03	-6.79E-04	2.27E-05																	
	10	4.62E+00	-5.69E-01	-5.18E-02	1.02E-02	1.53E-03	-6.90E-04	3.32E-05																	

1. Pond Design Inputs				
			Unit	Description
Area 1		59370	m²	1 North Catabrant
Runoff Coefficient 1 =	Sandy Soil, Flat, 5 - 10%	0.4		I - North Catchinent
Area 2		132620	m²	2 North West Catchment
Runoff Coefficient 2 =	Sandy Soil, Flat, 5 - 10%	0.4		2 - North-West Catchinent
Area 3		359200	m²	2 South West Catalyment
Runoff Coefficient 3 =	Sandy Soil, Flat, 5 - 10%	0.4		3 - South-West Catchinelit
Area 4		190200	m ²	4 Londfill Catabrant
Runoff Coefficient 4 =	Sandy Soil, Flat, 5 - 10%	0.4		4 - Landin Catchinent
Composite Runoff Coeff	icient, C	0.40		

2. Swale Design Inputs			Equations (reference below)
2.1 Swale #1: Area 1 (Northern)	÷.		http://onlinemanuals.txdot.gov/txdotmanuals/h
-	Value	Unit	-
Overland Flow (over waste mass)	400.00		4
API API	100.00	m mAHD	-
Slope	0.075	m/m	Slope = ARL/AFlow Length
Kerby's Roughness Facto Smooth bare soil	0.10		
Time of concentration, Tc-o	7.77	min	Tc-o = K*((L*N)^0.467)*(S^-0.235)
Channel Flow (through swale) A			K=constant; =1.44 for SI
Flow Length	150.00	m	L=flow length (m)
ARL Signa	1.32	mAHD	N=Kerby's roughness
Time of concentration Tc-ch	5.71	min	Tc-ch = K*(1.40.770)*(S4-0.385)
Manning's, n = Earth channel - clean	0.022		K=constant; =0.0195 for SI
Channel Flow (through swale) B - Steep			L=flow length (m)
Flow Length	290.00	m	S=slope (m/m)
ΔRL	15.42	mAHD	
Slope	0.053	m/m	T
Manning's n = Earth channel, story cohbles	4.75	min	K=constant =0.0195 for SI
Channel Flow (through swale) C	0.035		I =flow length (m)
Flow Length	510.00	m	S=slope (m/m)
ΔRL	0.88	mAHD	
Slope	0.002	m/m]
Time of concentration, Tc-ch	27.46	min	Tc-ch = K*(L^0.770)*(S^-0.385)
Manning's, n = Earth channel - clean	0.022		K=constant; =0.0195 for SI
Total Flow Time, Tc (min)	45.69	min	L=flow length (m)
0.0.0	_	_	S=slope (m/m)
2.2 Swale #2: Area 2 (Eastern)	brat	11-14	4
0	Value	Unit	-
Elow Length	75.00	m	-
ARI	8.59	mAHD	4
Slope	0.115	inverio.	Slope = ARL/AFlow Length
Kerby's Roughness Facto Smooth bare soil	0.10		
Overland Flow, Tc-o	6.14	min	Tc-o = K*((L*N)^0.467)*(S^-0.235)
Channel Flow (through swale) A			K=constant; =1.44 for SI
Flow Length	140.00	m	L=flow length (m)
ΔRL	2.43	mAHD	N=Kerby's roughness
Slope	0.017		
Concentrated Flow, IC-C	4.1/	min	1c-ch = K*(L^0.770)*(S^-0.385)
Channel Flow (through swale) B - Steen	0.022		K=constant; =0.0195 for SI
Flow Length	295.00	m	Seelone (m/m)
ΔRL	11.60	mAHD	
Slope	0.039		1
Concentrated Flow, Tc-c	5.41	min	Tc-ch = K*(L^0.770)*(S^-0.385)
Manning's, n = Earth channel - stony, cobbles	0.035		K=constant; =0.0195 for SI
Channel Flow (through swale) B - Steep			L=flow length (m)
Flow Length	335.00	m	S=slope (m/m)
ΔRL	0.59	MAHD	
21000	0.002		
Slope Concentrated Elow Te-e	0.002	min	Touch = K*/I 40 7701*/S4-0 385)
Slope Concentrated Flow, Tc-c Mannino's n = Farth channel - clean	0.002	min	Tc-ch = K*(L^0.770)*(S^-0.385) K=constant: =0.0195 for SI
Siope Concentrated Flow, Tc-c Manning's, n = Earth channel - clean Total Flow Time, Tc (min)	0.002 19.71 0.022 35.43	min	Tc-ch = K*(L^0.770)*(S^-0.385) K=constant; =0.0195 for SI L=flow length (m)
Stope Concentrated Flow, To-c Manning's, n = Earth channel - clean Total Flow Time, Tc (min)	0.002 19.71 0.022 35.43	min min	Tc-ch = K*(L^0.770)*(S^-0.385) K=constant; =0.0195 for SI L=flow length (m) S=slope (m/m)
siope Concertrated Flow, Tc-c Manning's, n * Earth channel - clean Total Flow Time, Tc (min) 2.3 Swale #3: Area 3 (Southern)	0.002 19.71 0.022 35.43	min min	Tc-ch = K*(L^0.770)*(S^-0.385) K=constant; =0.0195 for Si L=flow length (m) S=slope (m/m)
stope Concentrated Flow, To-c Manning's, n = Earth channel - clean Total Flow Time, Tc (min) 2.3 Swale #3: Area 3 (Southern)	0.002 19.71 0.022 35.43 Value	min min Unit	Tc-ch = K*(L^0.770)*(S^-0.385) K=constant; =0.0195 for SI L=flow length (m) S=slope (m/m)
stope Concentrated Flow, Te-c Manning's, n = Earth channel - clean Total Flow Time, Tc (min) 2.3 Swale #3: Area 3 (Southern) Overland Flow (over waste mass) Even Leorth	0.002 19.71 0.022 35.43 Value	min min Unit	Tc-ch = K*(L^0,770)*(S^-0.385) K*constant; =0.0195 for SI L=flow length (m) S=stope (m/m)
Stope Concentrated Flow, Tc-c Manning's, n = Eath channel - clean Total Flow Time, Tc (min) 2.3 Swale 82: Area 3 (Southern) Overland Flow (over waste mass) Flow (over waste mass) Abl	0.002 19.71 0.022 35.43 Value	min min Unit m mAHD	Tc-ch = K*(L*0.770)*(S*-0.385) K=constant, =0.0195 for SI L=flow length (m) S=slope (m/m)
Stope Concentrated Flow, To-e Concentrated Flow, To-e Marring's, n = [Eth channel - Gean (Teal Thow Time, F (min)] 2.3 Seale 83: Area 3 (Southern) Overfund Flow (over waste mass) Flow Length ARL ARL Stope	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005	min min Unit m mAHD	Tc-ch = K*(L*0.770)*(G*-0.385) K=constant, =0.0195 for SI L=flow length (m) S=slope (m/m) Sigpe = ARU/3Row Length
Stope Account and Flow. Te-C Marringh. n.s	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10	min min Unit m mAHD	Tc-ch = K*(L*0.709)(5* 4.385) K=constant = 0.01615 for SI L=flow tength (m) S=stope (m/m) Slope = &RL/&flow Langth
Stope Concentrated Flow, To-C Marring's, n = [Eth Cahreel - Cean Marring's, n = [Eth Cahreel - Cean Cale How Time, Topic 2.3 Seale B2, Area 3 (Southern) Overfault Flow, Center ARL ARL Stope Marchy Roughness Fact[Smoth bare soil Overfault Flow, To-O	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 22.79	min min Unit m mAHD min	Tc-ch = K'(L-0.770)(9-4.385) K~constant = 0.0195 for SI L=How targht (m) S=slope (mm) Slope = &&LLAFlow Length Tc-o = K'((LN)1-4.677)(S-0.235)
Stope Cardoorffaded Flow, Te-C Marring's, n = [Earn channel - Olean 2016 from Time, Time, Tomis 23 Swells F3, Area 3 (Southern) Overland Flow (over waste mass) Flow Length Alt, Alt, Alt, Change Time, Minghan Overland Flow, Te-C Overland Flow, Te-C	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 22.79	min min Unit m mAHD	Tc-ch = Kr(L+0.770)r(5+0.386) L-dov length (m) S=lope = AKUA5ew Length Slope = AKUA5ew Length Tc-o = Kr(L+N)*0.4477(5+0.235) K=cmattar = 1.44 for SI
stope Concentrated Flow, To-C Marring's, n = Earl Cahrent - Cean Marring's, n = Earl Cahrent - Cean Cale Thow Time (Find) 2.3 Seale #3: Area 3 (Southern) Contrated Flow, Central Flow, Cahrent ARL Stope Marthy Roughness Fact{Smooth bare soil Overland Flow (Brough swale) Flow Length Flow Length	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 22.79 1390.00	min min Unit m mAHD min min	Tc-ch = K*([L*0.770/(S*-0.386) K*=containt =0.0195 for SI L=How tength (m) S=aloge (m/m) Slope = &&LU&Flow Length Tc-o = K*([L*N)*0.4877/(S*-0.235) K=containt = 1.4 A for SI L=How tength (m)
Stope Concernitated Flow, Te-C Marring's, n = [Earl: charaet - Olean Marring's, n = [Earl: charaet - Olean 23 Swelle 23, Area 3 (Southern) Overland Flow (over waste mass) Flow Length Aft, Overland Flow, Te-C Souther flow, Te-C Overland Flow, Te-C Conter flow, Te-Co Conter flow, Te-Co Conter flow, Te-Co	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 22.79 1390.00 1.88	min min Munit m mAHD min min mAHD	Tc-ch = Kr(L-10.770)(5A-2.386) K-econtaint = 0.0195 for SI L=fore length (m) S=slope = ABL/Alf-ow Length Tc-o = Kr(L-N1)^0.4477(5A-2.35) K-(C-N1)^0.4477(5A-2.35) L=fore length (m) N=Martiy's roughness
stope Concentrated Flow, To-C Marring's, n = Earth Cahrend - Cean Marring's, n = (Earth Cahrend - Cean Cale Thow Time, T (min) 2.3 Seviel #3: Area 3 (Southern) Carefund Flow (Careford - Cale - Cale ARL Stope Targht - Cale Stope - Cale Marth - Cale Stope - Cale Marth - Cale Cale - Cale Marth	0.002 19.71 0.022 35.43 Value Value 250.00 1.18 0.005 0.10 22.79 1390.00 1.88 0.001	min min m m mAHD min mAHD	Tc-ch = K*(L*0.770/(5*-0.386) K~contatat =0.0195 for SI L=How tength (m) S=alope (m/m) Slope = ARLAFlow Length Tc-o = K*((L*N)*0.4877/(5*-0.236) K~contatat = 1.4 A for SI L=How tength (m) N=Kethy's roughness
stop Concertised Flow, Te-C Marring's, n = [Earl Channel - Olean Marring's, n = [Earl Channel - Olean 24 Searl Flow Time, Fig. (min) 25 Searl # 23, Area 3 (Southern) Arti, Arti, Arti, Arti, Arti, Content Flow, Theory Content Flow, Te-C Channel Flow (Through swise) Flow Length Flow Length Arti, Content flow, Te-C Content flow, Te-C Content flow, Te-C	0.002 19.71 0.022 35.43 Value Value Value 1.18 0.005 0.10 1.22.79 1390.00 1.88 0.001 1.88 0.001	min min Unit m MAHD m mAHD m mAHD min	Tc-ch = K*(L*0.770)(5*4.389) K~constant = 0.0195 for SI L=4ook targht (m) S=stope = 24L/24Fow Length Tc-o = K(L*10+0.4477)(5*4.236) K=constant = 1.44 for SI L=fow length (m) N=K45% roughness Tc-ch = K*(L*0.770)(5*4.286)
stope Concentrated Flow, To-C Marring's, n = Earth Cahreet - Cean Marring's, n = Earth Cahreet - Cean 2.3 Seale E3: Area 3 (Southern) 2.4 Seale E3: Area 3 (Southern) ARL ARL Stope Table Stopping ARL Overland Flow, Co-C Channel Flow (Enrough swale) Flow Length ARL Stope Cahreet Flow (Enrough swale) Flow Length ARL Stope Concentrated Flow, To-Ce Concented Flow, To-Ce	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.101 22.79 1390.00 1.88 0.001 65.28 0.022	min min Min m mAHD m mAHD min mAHD	Tc-ch = K*(L*0.770/(S*-0.386) K~contatat = 0.0195 for SI L=How tength (m) S=alope (m/m) Siope = ARLOATow Length Tc-o = K*((L*N)*0.4877/(S*-0.236) K~contatat = 1.4 A for SI L=How tength (m) N=Ketplys roughness Tc-ch = K*(L*0.770/(S*-0.386) K~contatat = 0.0156 for SI
Stope Concentrated Flow, Te-C Marring's, n = Entr Channel - Cean Marring's, n = Entr Channel - Cean Defail Flow Time, Term 23 Stope Flow Length ARL Stope Flow Length ARL Content Flow, Te-C Channel Flow, Thread, Balandi have soll Content Flow, Te-C Channel Flow, Thread, Balandi Flow Length ARL Stope Concentrated Flow, Te-C Concentrated Flow, Te-C Concentrated Flow, Te-C Concentrated Flow, Te-C Marring's, n = Entr Cancent - Cean Marring's, n = Entr Cancent - Cean	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.101 22.79 1390.00 1.88 0.001 85.28 0.022 88.1	min min Unit m mAHD min mAHD min min min	Tc-ch = K*(L*0.770)(5*4.389) K~constant = 0.0195 for SI L=4ook targht (m) S=stope = 24L/24Fow Langth Tc-o = K*(L*19*4.4275) K~constant = 1.4 for SI L=4ook tength (m) N=K475 roughness Tc-ch = K*(L*0.770)(5*4.389) K~constant = 0.0195 for SI L=4ook tength (m)
stope Concentrated How, Te-C Marring's, n	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 2.279 1390.00 1.88 0.001 65.26 0.022 88.1	min min Manu manu min min min min min	Tc-ch = I*(L-0.770)(9-0.389) K~constant,=0.0195 for SI L=How tength (m) Seatope (mm) Stope = ΔRLΔRiow tength Tc-c = K*(L-N)-0.487*(S-0.235) K~constant,=1.44 for SI L=How tength (m) N=Kdrp3 roughteness Tc-ch = K*(L-0.77(e ² - 0.385) K~constant,=0.95 for SI L=How tength (m) N=Kdrp3 roughteness Tc-ch = K*(L-0.77(e ² - 0.385) K~constant,=0.90 (0.95 for SI L=Kow tength (m)
stope Stope Starting to an Ecological Secondentiated flow. Tece Secondentiated flow. Tece Secondentiated Flow. 23 Secondentiated Flow. Stope	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.101 2.279 1390.00 1.88 0.002 88.1 Value	min min Unit m mAHD min mAHD min min min	Tc-ch = Kr(L-0.770)(5A-3.86) K-scontaint =0.0165 for SI L=foot unique (mim) S-slope = A&LAR-outing(h) Tc-o = Kr(L-N)-9.4677(SA-3256) K-scontaint = -1.44 for SI L=foot length (m) N=Metry's roughness Tc-ch = Kr(L-0.770)(5A-3.86) K-scontaint =0.0165 for SI L=foot length (m) S=slope (mim)
stope Concertised Flow. Tece Marring's, n = [Eart Canvel - Cean Table Thow Time, F (Inshi) 2.3 Swale 32: Area 3 (Southern) Overland Flow (over waste mass) Part Length ARL Stope Stope Nethyl Roughness Faccijenceth bare gol Overland Flow (Drough swale) Flow Langth Overland Flow (Tece Channel Flow (Brough swale) Flow Langth ARL Overland Flow (Tece Concentrated Flow. Tece Marring's, n = Eart classifier - Cean Marring's, n = Cean	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 1.22.79 1390.00 1.88 0.001 65.22 0.022 86.1 Value	min min Unit m mAHD min mAHD min min min	Tc-ch = K^{(L^0, 70)(S^0-0.385) K~contatat = 0.0195 for 51 L=low tength (m) S=stope (mim) Stope = 3.8L/Aflow Langth Tc-ce K^{(L-N)^0.467}(S^-0.235) K~contatat = 1.4 A for 51 L=low tength (m) N=V607(S^0-0.385) K-contatat = 0.956 for 51 L=low tength (m) S=stope (mim)
stope dearright n= Earl channel - clean dearright n= Earl Channel - clean 23 senie 23 Ares 3 (Southern) 23 senie 23 Ares 3 (Southern) Area	0.002 19.71 0.022 35.43 Value Value 1.18 0.005 0.101 22.79 1390.00 1.88 0.001 65.26 0.022 0.022 88.1 Value Value	min min Unit m mAHD min mAHD min min min min min min	Tc-ch = Kr(L-0.770)(5A-0.380) K-econtaint = 0.0105 for SI L=foot eqn(m) S=elope (mm) Siope = 24L/24Four Length Tc-ch = Kr(L-10.740(SA-0.230) K-econtaint = 0.0105 for SI L=foot length (m) S=elope (mm) S=elope (mm)
stope Concentrated Flow, Te-c Marring's, n = [Entroflammet-Gean Teal Flow Tens, File 23 Seale 32: Area 3 (Southern) Overfand Flow (sever waste mass) Flow Length ARL Stope Kenfry Roughness Face[Encode have soil Overfand Flow, Te-c Overfand Flow, Te-c Concentrated Flow, Te-c Marring's, n = [Encl flammet ARL Stope flammet 24 Swale & Area 4 (Landfill) Overfand Flow (sever waste mass) Flow Length ARL Stope (sever waste mass) Flow Length	0.002 19.71 0.0022 35.43 Value 250.00 1.18 0.005 0.10 1.88 0.001 1.88 0.001 1.88 0.001 1.88 0.001 1.88 0.001 1.88 0.001 1.486 0.002 1.486 0.002 1.486 0.002 1.486 0.002 1.466 0.022 0.02 0.022 0.022 0.02 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.02 0.022 0.022 0.02 0.022 0.02 0.022 0.02 0	min min Unit m mAHD min mAHD min min min min min min min	Tc-ch = I*(L*0.770)(9*-0.380) K=constant=,0.0165 for SI L=Nov tength (m) Seatope (mim) Stope = Δ8L/ΔRow tength Tc-o = K*(L*N)*0.467*(5*-0.235) K=constant=, ±1.44 for SI L=Nov tength (m) N=NotExp1 (m) S=stope (m/m)
stope dearright n= Text Channel - Cean dearright n= Text Channel - Cean Concleration ARL Stope Concerned from To-Ce Channel From (Trongs basile) From Length ARL Stope Concerned from To-Ce Channel From (To-Cean Marringht n= Text Channel - Cean dearright from To-Ce Channel From (To-Cean ARL Stope Concerned from To-Ce Channel From (To-Cean Marringht n= Text Channel - Cean Dearlinght from To-Ce Channel From (To-Cean Marringht n= Text Channel - Cean Dearlinght from To-Cean Channel From (To-Cean Dearlinght from To-Cean Channel From (To-Cean Dearlinght from To-Cean Dearlinght from	0.002 19.71 0.022 36.43 Value Value 1.18 0.005 0.101 22.79 1.390.00 1.88 0.001 1.88 0.001 1.88 0.002 1.88 1.002 1.88 0.002 1.88 1.002 1.88 1.002 1.88 1.002 1.88 1.002 1.88 1.002 1.88 1.002 1.88 1.002 1.88 1.85	min min min mAHD min mAHD min min min min maHD	Tc-ch = K*(L*0.770)(5*4.385) K~constant: =0.0165 for SI L=4ook uterght (m) S=stope = A&LARow Length Tc-o = K*(L*N+0.4477)(5*4.235) K-constant: =0.1015 for SI L=fook length (m) N=K45/7 roughness Tc-ch = K*(L*0.770)(5*4.385) K-constant: =0.0165 for SI L=fook length (m) S=stope = A&LARow Length
stope Stope Concertised Flow, Te-C Marring's, n = [Eart Canvel - Cean Table Thow Time, F (Inshi) 2.3 Sevie 92: Area 3 (Southern) Overland Flow (over waste mass) Prolu Length ARL ARL Stope Nethyl Roughness Fact[Encord have sol Overland Flow (Te-C Overland Flow, Te-C Marring's, n = Eart Canvel - Cean Marring's, n = E	0.002 19.71 250.00 250.00 1.18 0.005 0.10 22.79 1390.00 1.88 0.001 185.22 0.022 88.1 Value Value 210.00 14.58 0.069 0.22 0.029	min min m mAHD min mAHD min min min min min mun	Tc-ch = I*([-0.770)(9-0.386) K=constant=,0.0165 for SI L=Row tength (m) Seatope (mim) Stope = JAL/Jaflow Length Tc-o = K*([L*N)*0.467*(S^-0.235) K=constant=, #1.44 for SI L=Row tength (m) N=NASTY is cognitive. Tc-ch = K*([C*0]*0.467*(S^-0.235) K=constant=, #0.105 for SI L=Row tength (m) Seatope (m/m) Seatope (m/m)
stope dearright n= Extra Charret - Cean dearright n= Extra Statuters 2016 There Time, Figure 2016 There Time, Time 2016 There Time, Time 2017 There are a fill there 2017 There are a fill there 2017 There are a fill there 2017 There are a fill there 2016 There Time, Time 2017 There are a fill there 2017 There a fill there 2017 There are a	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 1390.00 15.45 Value 210.00 14.552 0.022 65.28 0.022 0.022 0.022 0.022 0.02 0.02 0.	min min m mAHD m mAHD m mAHD m mAHD m m M m m m m m m m m m m	Tc-ch = K*(L*0.770)(5*4.389) K~constant: =0.0195 for SI L=4ook uright (m) S=stope = A8L/AFlow Langth Tc-c = K*(L*N)*4.4677(5*4.225) K~constant: =1.01405 for SI L=flow Length (m) S=stope = A8L/AFlow Langth Tc-ch = K*(L-7070)(5*4.389) K~constant: =0.0195 for SI L=flow Length (m) S=stope = A8L/AFlow Langth Tc-c = K*(L*N)*4.4677(5*4.238)
stope dearrays, a.s. [Legen channel - clean dearrays, a.s. [Legen channel - clean dearrays, a.s. [Legen channel - clean dearrays Tans, F. (India) 3.3 See 1.3 . Area 3.(Southern) Contant Flow (Incore and Southern) Stope Marky N. Roughess Face[Smooth bare soit Contant Flow (Incore Southern) Contant Flow (Incore Southern) Contant Flow (Incore Southern) Contant Flow (Incore Mark) Contant Flow (Incore Mark) Southern (Incore Mark) Southern (Incore Mark) Southern (Incore Mark) Southern (Incore Mark) Contant Flow (Incore Mark) Contant Flow (Incore Mark) Contant Flow (Incore Mark)	0.002 19.71 0.022 35.43 Value 2250.00 1.18 0.005 0.10 1.390.00 1.390.00 1.88 0.001 65.22 88.1 Value 210.00 14.56 0.022 0.022 15.45	min min min mAHD min mAHD min mAHD min mAHD min mAHD	Tc-ch = K*(L*0.776)(5*4.386) K~consister <0.0195 for SI L=dow tength (m) S=stope (mm) Sitope = ALUAHow Length Tc-o = K*(L*0.776(5*4.326) K~constart = 1.44 for SI L=dow tength (m) N=M45K*12* roughness Tc-ch = K*(L*0.776(5*4.386) K=constart.=0.0165 for SI L=dow tength (m) S=stope = ABLIAHow Length Tc-o = K*(L*0.765(5*4.328) K~constart.= = 1.44 for SI
stope Stope Starting 1, n = Earl Charard - Cean Starting 1, n = Earl Charard - Cean Start Two Time, Fig. (min) 22.Sear Time, Time, Time, Cean 23.Sear Earl, Cean ARL ARL Stope Constraints ARL Constraints ARL Stope Constraints ARL Stope Constraints ARL Stope Constraints Stope Constraints ARL Stope Constraints Stope Constraints ARL Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope Constraints Stope St	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 1.88 0.001 18	min min mAHD min mAHD min min min min min min min min min maHD min maHD	Tc-ch = K*(L*0.770)(5*-6.386) K~econstart =0.0105 for SI L=flow length (m) Sealoge (mim) Stope = AtL/Aflow length Tc - 0 = K*((L*N)*0.467*(5*-0.226) K~econstart = 1.44 for SI L=flow length (m) N=Kerby 7.070(5*-0.226) K~econstart = 0.4105 for SI L=flow length (m) Sealoge (mim) Stope = AtL/Aflow Length Tc - e K*((L*N)*0.467*(5*-0.236) K~econstart = 1.44 for SI L=flow length (m) Stope = AtL/Aflow Length Tc - e K*((L*N)*0.467*(5*-0.236) K~econstart = 1.44 for SI L=flow length (m)
stope dearrays, a.s. [spin channel - Olian Dearrays, a.s. [spin chan	0.002 0.002 19.71 0.022 35.43 250.00 1.5.45 1.50 0.005 0.10 1.50 0.005 0.002 1.545 730.00 1.22 1.22 1.545 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.2	min min mAHD mAHD min mAHD min mAHD min mAHD	Tc-ch = K*(L*0.770)(5*-0.386) L=dow tength (m) S=stope (mm) S=stope (mm) S=stope (mm) S=stope (mm) S=stope (mm) Tc-ch = K*(L*1*stope (**-0.225)) K=contact = 1.4 & for S1 L=flow tength (m) N=Model's roughness Tc-ch = K*(L*1*stope (**-0.156 for S1) L=flow tength (m) S=stope (mm) Stope = a&L&B*(stope (**-0.156 for S1) L=flow tength (m) Stope = a&L&B*(stope (**-0.156 for S1) L=flow tength (m)
stope Stope Stope of the Stope of Stope Stope of Stope	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 1390.00 14.65 0.002 88.4 Value Value 210.00 14.55 0.022 15.45 730.00 1.223 0.022 15.45	min min mAHD min mAHD min min min min min min min min min min	Tc-ch = K*(L*0.776)(5*-4.389) K~constant = 0.0165 for SI L=4ook usingh (m) S=usiope (mim) Siope = 4.6L04Flow Langth Tc-c = K*(L*10*0.4677)(5*-4.225) K~constant = 0.1695 for SI L=4ook usingh (m) S=usiope (mim) S=usiope (mim) S=usiope (mim) Siope = 4.6L04Flow Langth Tc-c = K*(L*10*0.4677)(5*-0.238) K~constant = 4.14 for SI L=4ook usingh (m) S=usiope (mim) Siope = 4.6L04Flow Langth Tc-c = K*(L*10*0.4677)(5*-0.238) K~constant = 4.14 for SI L=4ook usingh (m) K~constant = 4.14 for SI L=4ook usingh (m) Tc-ch = K*(L*10*0.4677)(5*-0.238) K~constant = 4.14 for SI L=4ook usingh (m) K~constant = 4.14 for SI L=4ook usingh (m) K~
Stope Stope Darring's, n.m. Earling Times Time, 7 (and) 23.9 weight #32. Area 3 (Southern) Overland Flow (over wate mass) Fibre Times Time, 7 (and) Overland Flow (over wate mass) Fibre Longin Overland Flow (over wate mass) Fibre Longin Overland Flow, To-co Channel Flow (trough wate) Fibre Longin Overland Flow, To-co Channel Flow (trough wate) Fibre Longin Overland Flow, To-co Channel Flow (trough wate) Flow Longin Overland Flow, To-co Channel Flow (trough wate) Flow Longin Constant Flow (trough wate) Constant Flow (trough wate) Flow Longin Stati Flow Times, Field/Poor grasshough have soll Overland Flow (trough wate) Flow Longin Stati Flow Longin </td <td>0.002 0.002 19.77 0.022 35.43 Value 250.00 1.18 0.005 0.10 0.10 0.10 0.10 0.005 0.10 0.005 0.00 1.545 730.00 1.545 730.00 1.222 0.002 2.0.02 2</td> <td>min min Munt m mAHD min min min min mahHD min mahHD min mahHD</td> <td>Tc-ch = K*(L*0.770)*(5*-6.386) K-scontaster =0.0195 for S1 L=flow tength (m) S=stope = 2.8L/3.5*ow Length Tc-ch = K*(L*1)*-6.235) K=contaster = 1.4.6 rS1 L=flow tength (m) N=M567/5* rcoginess Tc-ch = K*(L*0.770)*(5*-6.356) K=contaster = 1.4.6 rS1 L=flow tength (m) S=stope = 2.8L/3.5*ow Length Tc-ch = K*(L*0.770)*(5*-6.255) K=contaster = 1.4.6 rS1 L=flow tength (m) Stope = 2.8L/3.5*ow Length Tc-ch = K*(L*0.770)*(5*-6.255) K=contaster = 1.4.6 rS1 L=flow tength (m) N=M567/5* rcoginess</td>	0.002 0.002 19.77 0.022 35.43 Value 250.00 1.18 0.005 0.10 0.10 0.10 0.10 0.005 0.10 0.005 0.00 1.545 730.00 1.545 730.00 1.222 0.002 2.0.02 2	min min Munt m mAHD min min min min mahHD min mahHD min mahHD	Tc-ch = K*(L*0.770)*(5*-6.386) K-scontaster =0.0195 for S1 L=flow tength (m) S=stope = 2.8L/3.5*ow Length Tc-ch = K*(L*1)*-6.235) K=contaster = 1.4.6 rS1 L=flow tength (m) N=M567/5* rcoginess Tc-ch = K*(L*0.770)*(5*-6.356) K=contaster = 1.4.6 rS1 L=flow tength (m) S=stope = 2.8L/3.5*ow Length Tc-ch = K*(L*0.770)*(5*-6.255) K=contaster = 1.4.6 rS1 L=flow tength (m) Stope = 2.8L/3.5*ow Length Tc-ch = K*(L*0.770)*(5*-6.255) K=contaster = 1.4.6 rS1 L=flow tength (m) N=M567/5* rcoginess
stope Stope Stopes Start Now Time, Team (Calmont - Cean Start Now Time, Team) 2.2 Start Start Time, Time, Team) 2.3 Start Start Time, Team) ARL Stope Ecopy ARL Stope Stopes St	0.002 0.002 19.77 0.022 35.43 Value 250.00 1.18 0.005 0.10 2.79 1300.00 1.88 0.001 1.85 0.02 1.002 1.545 1.1545 730.00 1.1545 730.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.545 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.555 750.00 2.	min min m mAHD mAHD mAHD min mAHD min mAHD min mAHD min min	Tc-ch = K*(L*0.770)(5*-6.386) K~econstart =0.0106 for SI L=flow length (m) Selege (mit) Stope = aBL/aFlow length Tc-c = K*(L-10)*0.4677(15*-0.328) K-econstart = 0.1058 for SI L=flow length (m) N=Karpy Toughness Tc-c = K*(L-7070(15*-0.386) K-econstart = 0.1058 for SI L=flow length (m) Selege (mit) Stope = aBL/aFlow length Tc-c = K*(L-10)*(15*-0.325) K-econstart = 1.4 for SI L=flow length (m) Stope = aBL/aFlow length Tc-c = K*(L*(10)*0.4677)(15*-0.325) K-econstart = 4.14 for SI L=flow length (m) N=where (mit) Stope = ABL/aFlow length Tc-c = K*(L*(10)*0.4677)(15*-0.325) K-econstart = 4.14 for SI L=flow length (m) N=where (mit) m)
stope dearrays, n. a. [Enclosed - clean dearrays, n.][Enclosed - cl	0.002 19.71 0.022 35.43 Value 250.00 1.18 0.005 0.10 22.79 1300.00 1.86 0.001 186 2.60 0.022 0.022 0.022 15.45 15.	min min min min min min min min min min	Tc-ch = K*(L-0.776)*(5^-4.389) K-constant: -0.0195 for S1 L-flow tength (m) 3-stope (mm) Stope = 4.8L/345w Length Tc-ch = K*(L-0.776)*(5^-4.239) K-Ch = K*(L-0.776)*(5^-4.239) Tc-ch = K*(L-0.776)*(5^-4.239) K-Ch = K*(L-0.776)*(5^-4.239) Tc-ch = K*(L-0.776)*(5^-4.239) K-Ch = K*(L-0.776)*(5^-4.239) Tc-ch = K*(L-0.776)*(5^-4.239) K-Ch = K*(L-0.776)*(5^-4.239) Tc-ch = K*(L-0.7776)*(5^-4.239) Tc-ch = K*(L-0.7776)*(5^-5.239) Tc-ch = K*(L-0.776)*(5^-5.239) Tc-ch = K*(L-0.776)*(5^

*Source for Design Input data from AutoCAD Drawing

Scenario 1 = 1:100 Year 72 hour Storm

Rainfall Data	
Design Period	1:100
Storm Duration (hrs):	72 hour
Total Rainfall (mm)	436.0

Volume per Catchment

1 - North Catchment		2 - North-West Catchment		3 - South-West Catchm	ent	4 - Landfill Catchment	
Catchment Area (m ²):	59370	Catchment Area (m ²):	132620	Catchment Area (m ²):	359200	Catchment Area (m ²):	190200
Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400
Rainfall (mm)	436.0	Rainfall (mm)	436.0	Rainfall (mm)	436.0	Rainfall (mm)	436.0
Storage Requirement (m ³)	10,354	Storage Requirement (m ³)	Storage Requirement (m ³) 23,129 Storage Requirement (m ³) 62,644		Storage Requirement (m ³)	33,171	
						Total Storage Required (m ³)	33,171
	Design Volume (m ³)	45,842					
						Difference (m ³)	12,671

Design Operational Volumes

Main attenuation pond = 34,620m3 Evaporation pond #1 = 5,611m3 Evaporation pond #2 = 5,611m3 Total = 45,842m3

Scenario 2 = 1:100 Year 24 hour Storm

Rainfall							
Design Period	1:100						
Storm Duration (hrs):	24 hour						
Rainfall (mm)	355.0						

Volume per Catchment							
1 - North Catchmen	t	2 - North-West Catchme	ent	3 - South-West Catch	ment	4 - Landfill Catchment	:
Catchment Area (m ²):	59370	Catchment Area (m ²):	132620	Catchment Area (m ²):	359200	Catchment Area (m ²):	190200
Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400	Runoff Coefficient, C:	0.400
Rainfall (mm)	355.0	Rainfall (mm)	355.0	Rainfall (mm)	355.0	Rainfall (mm)	355.0
Storage Requirement (m ³)	8,431	Storage Requirement (m ³)	18,832	Storage Requirement (m ³)	51,006	Storage Requirement (m ³)	27,008
						Total Storage Required (m ³)	27,008
-						Design Volume (m ³)	45,842
						Difference (m ³)	18.834

Pilbara Regional Waste Management Facility Shire of Ashbuton

Stormwater Drainage: Swale Design

		Comments Equations (references below)		
2.1 Swale #1: Area 1 (Northern)		http://onlinemanuals.txdot.gov/txdotmanuals/hyd/rational_method.htm	(1)	
		http://www.bom.gov.au/water/designRainfalls/ifd/howtoIFDTool.shtml	(2)	
Rainfall Data		http://www.ce.utexas.edu/prof/maidment/CE365KSpr14/Visual/OpenChannels.pdf	(3)	
Design Period (yrs):	100	http://www.efm.leeds.ac.uk/CIVE/CIVE2400/OpenChannelHydraulics2.pdf	(4)	
Total Concentration Time, Tc (min)	45.69			
1	26.7	$ln(l) = A+B(ln(Tc))+C(ln(Tc))^{2}+D(ln(Tc))^{3}+E(ln(Tc))^{4}+F(ln(Tc))^{5}+G(ln(Tc))^{6}$	(2)	
2	36.3	I = intensity (mm/hr)		
5	54.1	Tc = total time concentration (hr)		
10	65.9	A through G = ARI coefficients (from table at top of spreadsheet)		
20	80.8			
50	101.7			
100	118.5	2813.55411		
Intensity for Tc (mm/h)	118.5			
Peak Flow Rate (m ³ /h)	2813.55	Q = ((C*I*(A/10000))/360)*3600 for m3/hr	(1)	T= 10 m
		C=runoff coefficient		
Swale Geometry		I=rainfall intensity (mm/hr)		
Depth of Flow, h (m)	0.5	A=area(m2)		1 h= 0.5
Bottom width, b (m)	4			
Side slope, S (m)	6			S = 6
Top width. T (m)	10	T = b + (2*S*h)	(3) pg2	
Swale Area, As (m ²)	3.5	$As = (b+S^*h)^*h$	(3)	b= 4 m
Wetted Perimeter, Pw (m)	10.08	Pw = b + 2*h*sqrt(1+S^2)	(3)	
Hydraulic Radius, Rh (m)	0.347	Rh = As/Pw	(3)	
Hydraulic Depth, Dh (m)	0.350	Dh = As/T	(3)	
Slope A				
Flow Length (m)	150.00			
Total Fall (m)	1.32			
Slope of Swale, Ss	0.009	Slope = $\Delta RL/\Delta Flow Length$		
Classe D. Steen				
Slope B - Steep	000.00			
Flow Length (m)	290.00			
Fland of Swale Se	15.42	Slone = ABI /AFlew length		X
Slope of Swale, SS	0.05	Slope = ARI/Ariow Length		
Sione C				
Elow Length (m)	510.00			
Total Fall (m)	0.00			
Slope of Swale, Ss	0.0017	Slope = ΔRL/ΔFlow Length		
	0.0011			
Channel Flow				
A: Manning's coefficient, n	0.022			
A: Maximum Velocity, V (m/s)	2.11	V = (1/n)*(Rh^(2/3))*(Ss^1/2) 7.37	(3)	
B - Steep: Manning's coefficient, n	0.035			
B - Steep: Maximum Velocity, V (m/s)	3.25	V = (1/n)*(Rh^(2/3))*(Ss^1/2) 11.39	(3)	
C: Manning's coefficient, n	0.022			
C: Maximum Velocity, V (m/s)	0.93	V = (1/n)*(Rh^(2/3))*(Ss^1/2) 3.26	(3)	
Maximum Flow, Q (m ³ /s)	3.26	Q = V*As 22.02 17.62	(3)	
Maximum Flow, Q (m ³ /h)	11751	Pass		
Froude Number, Fr	1.14	Supercritical Fr = V/sqrt(g*Dh), where g = gravitational force; = 9.81 m/s2	(3)	
Reynolds Number, Re (channel)	409,111	Turbulent Re = V*(As/Pw)*(1/v) = V*Rh*(1/v), where v is kinematic viscosity (m2/s); = 1.787*10^-6 @ 0	°C (4) pg15	

Pilbara Regional Waste Management Facility Shire of Ashbuton

		Comments	Equations (references below)		
2.2 Swale #2: Area 2 (Eastern)			http://onlinemanuals.txdot.gov/txdotmanuals/hvd/rational_method.htm	(1)	
				(-)	
			http://www.bom.gov.au/water/designRainfalls/ifd/nowtoiFD100i.sntml	(2)	
Rainfall Data			http://www.ce.utexas.edu/prof/maidment/CE365KSpr14/Visual/OpenChannels.pdf	(3)	
Design Period (yrs):	100		http://www.efm.leeds.ac.uk/CIVE/CIVE2400/OpenChannelHydraulics2.pdf	(4)	
Total Concentration Time, Tc (min)	35.43				
Intensity for Tc (mm/h)	135.3				
Peak Flow Rate (m ³ /h)	7,180		Q = ((C*I*(A/10000))/360)*3600 for m3/hr	(1)	T = 5.36 m
			C=runoff coefficient		
Swale Geometry			I=rainfall intensity (mm/hr)		
Depth of Flow, h (m)	0.56		A=area(m2)		1 h= 0.56 m
Bottom width, b (m)	2				
Side slope, S (m)	3				S = 3
Top width, T (m)	5.36		T = b + (2*S*h)	(3) pg2	\leftarrow
Swale Area, As (m ²)	2.0608		As = (b+S*h)*h	(3)	b = 2 m
Wetted Perimeter, Pw (m)	5.54		Pw = b + 2*h*sqrt(1+S^2)	(3)	
Hydraulic Radius, Rh (m)	0.372		Rh = As/Pw	(3)	
Hydraulic Depth, Dh (m)	0.384		Dh = As/T	(3)	
Slope A					
Flow Length (m)	140.00				
Total Fall (m)	2.43				
Slope of Swale, Ss	0.017		Slope = ΔRL/ΔFlow Length		
Slope B - Steep					
Flow Length (m)	295.00				
Total Fall (m)	11.60				
Slope of Swale, Ss	0.039		Slope = $\Delta RL/\Delta Flow Length$		
Slone C					
Flow Length (m)	225.00				
Flow Length (m)	335.00				
	0.59				
Slope of Swale, Ss	0.002		Slope = ARL/Arlow Length		
Flow					
	0.022				
A. Ivianning's coefficient, n A: Maximum Velocity, V (m/s)	0.022		$V = (1/n)*(Bh^{2}(2))*(Se^{1}(2))$	(3)	
B - Steen: Manning's coefficient n	0.035			(3)	
B - Steep: Maximum Velocity V (m/s)	2 93		V = (1/n)*(Rh^(2/3))*(Ss^1/2)	(3)	
C: Manning's coefficient n	0.022			(0)	
C: Maximum Velocity V (m/s)	0.022		V = (1/n)*(Rh^(2/3))*(Ss^1/2)	(3)	
	5.55			(*)	
Maximum Flow, Q (m ³ /s)	2.03		Q = V*As	(3)	
Maximum Flow, Q (m ³ /h)	7,318	Pass			
Froude Number, Fr	1.51	Supercritical	Fr = V/sqrt(g*Dh), where g = gravitational force; = 9.81 m/s2	(3)	
Reynolds Number, Re (channel)	609,687	Turbulent	Re = V*(As/Pw)*(1/v) = V*Rh*(1/v), where v is kinematic viscosity (m2/s); = 1.787*10^-6 @ 0°C	(4) pg15	

		Comments	Equations (references below)		
2.3 Swale #3: Area 3 (Southern)			http://onlinemanuals.txdot.gov/txdotmanuals/hyd/rational_method.htm	(1)	
			http://www.bom.gov.au/water/designRainfalls/ifd/howtoIFDTool.shtml	(2)	
Rainfall Data			http://www.ce.utexas.edu/prof/maidment/CE365KSpr14/Visual/OpenChannels.pdf	(3)	
Design Period (yrs):	100		http://www.efm.leeds.ac.uk/CIVE/CIVE2400/OpenChannelHydraulics2.pdf	(4)	
Total Concentration Time, Tc (min)	88.06				
Intensity for Tc (mm/h)	81.3				
Peak Flow Rate (m ³ /h)	11,681		Q = ((C*l*(A/10000))/360)*3600 for m3/hr	(1)	T = 10.6 m
			C=runoff coefficient		
Swale Geometry			I=rainfall intensity (mm/hr)		
Depth of Flow, h (m)	0.55		A=area(m2)		1
Bottom width, b (m)	4				
Side slope, S (m)	6				S = 6
Top width, T (m)	10.6		T = b + (2*S*h)	(3) pg2	<
Swale Area, As (m ²)	4.015		As = (b+S*h)*h	(3)	b =
Wetted Perimeter, Pw (m)	10.69		Pw = b + 2*h*sqrt(1+S^2)	(3)	
Hydraulic Radius, Rh (m)	0.376		Rh = As/Pw	(3)	
Hydraulic Depth, Dh (m)	0.379		Dh = As/T	(3)	
Slope					
Flow Length (m)	1390.00				
Total Fall (m)	1.88				
Slope of Swale, Ss	0.001		Slope = $\Delta RL/\Delta Flow Length$		
Flow					
Manning's coefficient, n	0.022				
Maximum Velocity, V (m/s)	0.87		V = (1/n)*(Rh^(2/3))*(Ss^1/2)	(3)	
Maximum Flow, Q (m ³ /s)	3.49		Q = V*As	(3)	
Maximum Flow, Q (m ³ /h)	12,577	Pass			
Froude Number, Fr	0.45	Subcritical	Fr = V/sqrt(g*Dh), where g = gravitational force; = 9.81 m/s2	(3)	
Reynolds Number, Re (channel)	182,866	Turbulent	Re = V*(As/Pw)*(1/v) = V*Rh*(1/v), where v is kinematic viscosity (m2/s); = 1.787*10^-6 @ 0°C	(4) pg15	

I h= 0.55 m

χ

 \rightarrow

b= 4 m

		Comments	Equations (references below)			
2.4 Swale #4: Area 4 (Landfill)			http://onlinemanuals.txdot.gov/txdotmanuals/hyd/rational_method.htm	(1)		
			http://www.bom.gov.au/water/designRainfalls/ifd/howtoIFDTool.shtml	(2)		
Rainfall Data			http://www.ce.utexas.edu/prof/maidment/CE365KSpr14/Visual/OpenChannels.pdf	(3)		
Design Period (yrs):	100		http://www.efm.leeds.ac.uk/CIVE/CIVE2400/OpenChannelHydraulics2.pdf	(4)		
Total Concentration Time, Tc (min)	52.08					
Intensity for Tc (mm/h)	110.3					
Peak Flow Rate (m ³ /h)	8,391		Q = ((C*l*(A/10000))/360)*3600 for m3/hr	(1)		
	-		C=runoff coefficient			
Swale Geometry			I=rainfall intensity (mm/hr)			
Depth of Flow, h (m)	0.5		A=area(m2)			
Bottom width, b (m)	3					
Side slope, S (m)	6					
Top width, T (m)	9		T = b + (2*S*h)	(3) pg2		
Swale Area, As (m ²)	3		As = (b+S*h)*h	(3)		
Wetted Perimeter, Pw (m)	9.08		$Pw = b + 2*h*sqrt(1+S^2)$ (3)			
Hydraulic Radius, Rh (m)	0.330		Rh = As/Pw	(3)		
Hydraulic Depth, Dh (m)	0.333		Dh = As/T (3)			
Slope	l					
Flow Length (m)	730.00					
Total Fall (m)	1.22					
Slope of Swale, Ss	0.002		Slope = ΔRL/ΔFlow Length			
Flow						
Manning's coefficient n	0.000					
Maximum Velocity V (m/s)	2 17		$V = (1/n)*(Bh^{2})*(Se^{1})$	(3)		
Maximum Flow \mathbf{O} (m ³ /s)	6.51		V = (1/1) (1/1) (2/3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (
Maximum Flow, Q (m ³ /h)	23.441	Pass		(0)		
Froude Number. Fr	1.20	Supercritical	Fr = V/sqrt(q*Dh), where q = gravitational force; = 9.81 m/s2	(3)		
Revnolds Number, Re (channel)	401,166	Turbulent	$ \begin{array}{l} \text{Appl} \mathbf{R} = \mathbf{V}^*(\mathbf{A}_s) \mathbf{P} \mathbf{W}^*(1/\mathbf{v}) = \mathbf{V}^* \mathbf{R} \mathbf{h}^*(1/\mathbf{v}), \text{ where } \mathbf{v} \text{ is kinematic viscosity } (m2/s) := 1.787^*10^{-6} @ 0^{\circ} \mathbf{C} \qquad (4) \text{ pq15} \end{array} $			

Appendix D:CulvertandRockArmouring Design Calculations

	Intersection	on Point #1	Intersecti	on Point #2	Intersection	on Point #3	ו
Parameter	Value	Units	Value	Units	Value	Units	Comments
Maximum Inlet Flow Rate, Qi =	2.03	m3/s	6.51	m3/s	3.26	m3/s	
Maximum Outlet Flow Rate, Qo =	3.5	m3/s	6.51	m3/s	3.26	m3/s	
Rainfall Event, ARI =	100	years	100	years	100	years	
Tail Water, TW =	0.5	m	0.5	m	0.5	m	Height of the water designed for the swales
Box culvert width, B =	4.8	m	9.6	m	4.8	m	
Box culvert Height, D =	0.9	m	0.9	m	0.9	m	
Box Culvert crossectional area, A =	4.32	m2	8.64	m2	4.32	m2	
Length, L =	20	m	12	m	5	m	
Slope, So =	0.0117	,	0.0022		0.0000		
Ratio Qi/B =	0.42		0.68	:	0.68		
Allowable Head water, AHW =	0.8	m	0.8	m	0.8	m	
HW/D =	0.44	m	0.6	m	0.6	m	Appendix B, Figure B1, pg 146 Austroads
Hwi =	0.40	m	0.54	m	0.54	m	
Check Hwi < AHW	PASS		PASS	i i	PASS		
Factor of Safety	2.0	1	1.5		1.5		
							Table 3.2, pg 84 Austroads
Entry loss coefficient, ke =	0.5		0.5		0.5		0.5 = reinforced concrete box, square on 3 edges
Head, H =	0	m	0	m	0	m	Appendix B, Figure B5, pg 150 Austroads
Critical depth, dc =	0.26	m	0.36	m	0.36	m	
(dc + D)/2 =	0.58	m	0.63	m	0.63	m	
							if TW > D:
							if yes, ho = TW
ho =	0.58	m	0.63	m	0.63	m	if if no, ho = the larger of TW and (dc + D)/2
L*So =	0.23	m	0.026	m	0	m	
Headwater under outlet control conditions, Hwo =	0.35	m	0.60	m	0.63	m	
Check Hwo < AHW	PASS		PASS		PASS		
Factor of Safety	2.3		1.3		1.3		
Outlet Velocity	0.81	m/s	0.75	m/s	0.75	m/s	Qo/A
Inlet Froude, Fri =	0.16		0.25		0.25		Qo*sqrt(B/(g(A^3)))
Outlet Froude, Fro =	0.27		0.25		0.25		

Free water surface HW < 1.2D

*Source: Austroads Guide to Road Design - Part 5B: Drainage - Open Channels, Culverts and Floodways **Table is a modification of the worksheet provided on page 86 of the Austroads Design Guide

Figure B 1: Headwater depth for box culvert with inlet control

B.3 Outlet Control

Figure B 5: Head for concrete box culverts flowing full with outlet control (*n*=0.012)

B.2 Inlet Control

Figure B 1: Headwater depth for box culvert with inlet control

B.3 Outlet Control

Figure B 5: Head for concrete box culverts flowing full with outlet control (*n*=0.012)

Figure 2.22: Relationship between bed velocity and rock diameter